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A METHGD FOR CALCUIATING THE FATURAL FREQUENCIFS
OF CONTINUOUS BEAMS, FRAMES, AND CERTAIN

TYPES OF PLATES

I. INTRODUCTION

1s Object and Scope of Investigation,

The pusposs of this report is to present & method for calculating
the undamped natural frequencies of flccural vibration of elastic structures.
The method is epplicable to continuous beame on rigid or flexible supports,
te rigid jointed plane frameworks, and to certain types of continuouns plates.
The beams may have any number of apans of arbitrary length and any condition
of restraint at the far ends. In gensral, the frames are zssumed to be fix-
ed against lateral displacement, but consideration is also glven to symmetri-
cal, single-bay, multi-story frames free to undergo sidesway. The plates sra
assuned to be simply supported along two opposite edges and, in one direction,
continuous over a serias of rigid supports transverse to the simply suppo.ted
edges. .The mass of the members composing the structure is assumed to be uni-
formly distributed along each member, A system which has diatributed mass
and elasticity has an infinite number of natural frequemncies, With the method
presanted herein one is capable of determiring all natural frequemcies as well
as the corresronding natural modes of vibration of a system., The assumptions
made in the analysis are those of the ordinary theory of flexure of besms and
of medium~thick plates.

Knowledge of the natural frequencies cf structures is important for
the analysis and design of atructures subjected to time-depemdent forces,

T 77 aii




2
This knowledge is particulerly significant in the case of stationary periodiec
forces such asz those resulting from rotating machinery. I1f the operating fre=
quency of *the machinery is sufficlently close to one of the natural frequ<.acies
of the structure supporting it, violent vibrstions will ensue which, in the
absence of dissipative forces, may sttasin extremely large amplitudes. In
order to aveid, by proper design, the destructive cornditicn of resonance, 1t
is neocessary to have & workable method for predicting the natural frequencies

of structures. It has becn the object of this investigatio

=
ct
Q
4]
cr
&
g
cl

meet this need.

The problem of calculating natural frequencies of dynamic systems
has been ths subject of discussion for a long period of time. Thke natural
frequencies of single span members heving different bourdary conditions have
been irvestigated rather exhsustively; yet, comparatively little has been
dore for muliiple member systems. Except for stiructures consisting of only
a few members, the clessical method of determining natural frequencies be-
comes sc cumbersome that it tends to be entirely useless for practical pur-
poses. Several considerably more efficient methods have been developed, but
these geem to be dpplicable to limited tyres of structures.

Among the available methods, Mudrak's method (1): (2), (3) whick
utilizes the effective stiffness criterion for determining natural frequencies,
is by far the most efficient. This method has been applied only Yo continu-
ous beams cn rigid supports and apparently ie noi capable of extension to
continucus frames involving closed panels. The natursl frequencies of con-
Vinuvus veaums on intermediate flexibls zupperts may be best determined by the

method developed by lLee and Saibel (4), (5). This method utilizes principles

'Numbers ir. parentheses, unless otherwise identified, refer to the Bibli-
ography at the end of this report.

§ et
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3
thet are not well known to engineers; furthermore, it presupposes thai the
natural modes of vibration of the beam without the intermediate supports are
known. This assupption restricts seriously the rsnge of applicabliity of this
precedure. The determination of the natural frequencies of continuous frames,
involving closed panels, has apparently been attempted only by use of the
classical method (6), which, as already siated, is too laborious for practical

applicatione.

Iy 1=

i

The method described herein is a generslization of Holzer's method
(7) for calculating the natural frequencies of torsionsl vibration of shafts.
It utilizes well known engineering principles and, like Holger's method, it
is reduced to a routine scheme of computation which, when repeated a suf-
ficient number of times,; will give the natural fregquencies of the system to
any desired degree of accuracy. Holzer's method hes been applied to the de-
termination of the natural frequencies of flexural vibration of beams, firs.,
by Myklestad (8) and later by Prohl (9), Rankin (10), and Bellin (11). 1In
these studies, distributed masses were assumed to be lumped at a number of
stations along the length of the beam while the portion of the beam between 2

thesa stations was assumed to be massless. In the method to be presented,

R IR IR

the mass im assumed to be uniformly distributed along each member of the

structure. Abrupt, changes in.the megnitude of the diestributed mass or-of - -

By
Ak at

the flexural rigidity within a member may be treated by assuming that the
member is supported by a flexible support of sero stiffness at the point of

the discontinuity.

7

e

The principles underlying the method are presented in Chapter II

of this report. This chapter eisc includes definitions of the several physi-

P AR

P SO . o

cal quantities which are necessary in the analysis. These quantities are tha

dynamic stiffnesses and the dynamic cerry-over factors which are analogous to
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those introduced by Hardy Cross in connection with the method of moment distri-
bution (12). Extensive tables of numerical velues of these quantities are pre-
sented in Apperdix A; while the derivation of the governing equations is glven
in Apperdix B, With thesz tatulated values, the calculetions required in the
applicaticn ¢f ‘ha method to particular problems are simplified immensely.

The spplication of tihe method to continuovus beams on rigid supports
is discussed in Chapter IJI. In addition, several alternate metihods of analysis

ere considered asnd tis range of applicability and the reletive merits of each

.t

are discussed.

Chaptar IV presents the extension of the method to frames without
sidesway. For continuous beams, & single procedure is capable of determining
ell poesible natural.frequencies. For frames, however, this procedure may
fail to detect those ratural frequencies for which only & portion of the
structure vibrates while tbhe rest remains stationary. A technique for over-
coming this difficulty has been developed and is presented also in Chapter IV.
In the study of frames, the effect of permanent exial forces is neglected.

The concluding section of Chapter IV is devoted to a discussion of the mammer
in which this effect may be taken into account. Alsa, it 15 pointed out that
problems of frameworic instsbllity esre special cases of the more general problem

In Chapter V, the methcd is extended to beams continuous over sup-
ports tnaet sre flexible instead of rigld. The resistance to deformation of
the supports is represented by an equivalent set of mutually indepenuent de-
fieciicaal and rotational springs. It is shown that the method may be modi-
fied rexdily to include the influence of concentrated rigid messes, of con-

centrated sprung messes, and of au elastic subgrade of the Winkler typo.

]
LIT E S S MR
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Chapter VI shows the application of the mevhod to0 summetrical. one-
Say. multi-story building frames which are free to undergo sidesway.

Chapter VII i1s concerned with the extension of the method %o con-
tinuous plates baving two opposite edges simply supporteds The pertinent
expressiona for dymanic stiffness and dynamic carry-over factor for plates
ars presented in Appendix B, It is 21so shown that numerical valuea of these
quantities may be obtained from available tahles of stiffness and carry-over
factor for compressed platss.

Table II in Appendix A gives influence coefficients for calculating
the ratural frequencies of vibration of systems composed of bars. It is
poirited out that Miller -Breslau's principle of influence lines 1s applicable
in the case of steady-state forced vibrations, so thst these coefficients may
be interpreted also as coefficlents for dynamic fixed-end moments produced by
a concentrated harmonic force.

Appendix C includes a brief account of the manner in which the in-
formation presented in this report may be used in the analysis of the steady-
state forced vibration of frames.

For convenience of reference, a detailed outiine of the steps in-

cluded in each chapter., In addition, several numerical examples are given

to illustrate the applicetion of the method and to indicate convenient schemes

for arranging the computatioms. Throughout this report, specisl effort has
been made to present each chapter as independently of the others as possible

and to discuss the numericsl exsmples adequately.

2, Sign Convention and Notation.

The following aign convsution i1s used throughout thie report with

the exception of Appendix B. Clockwise rotatlons are positive. Internal

il ""\:‘
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bending aoments acting et the ends of & member (mot a joint) and external
mements, except for the restr=ining moments provided by rotational springs,
are positive clockwise. The restreiningz moment of a rotational spring 1is
positive when it acts in a counter-cloeckwise direction. Defleciions =ro
positive downward. Shears acting at the ends of a member (not a joint) and
external forces, except for the forces produced by deflectional springs, are
rositive downward. The restraining force of & deflectional spring is posi-
tive upward.

The letter symbols ussG are defined where they first appear in the
text or by illustration, and.they are agsembled in this section fer cor-

venience of reference.

General:
w = cireular frequency oX vibration
wy = nstural circular frequency of vibraticn
i 4 = frequency of vibration, in cycies per second
t = time
E = modulus of elasticity

For structures composed of barss
x = borizontal coordinate

I moment of inertis of the cross section of a bar about its

centroidal axis

L = span length of a bar

n = mass per unit of Jength of a bar

n = magritude of a concantrated rigid mass

(m) = magnitude of an equivalent concentrated rigid mess

3 mwt
J/Q?%L- L = a ¢imensionlsss parameter for a bar

Ay = A value correspording to a netural frequency

(AT ,1"
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deflection amplitude at a puint of 8 bar dsfined by the
coordinais x

rotetion amplitude at <upport or joint J
deflection amplitudse at support J

amplitude of lnternal bending moment at support j of a continuous
beam

anplituds of internel bending moment st end J of a bar ji in s
continuous frame

externsl moment at support or joint j of a <catinuous bedm or

framd -

amplitut.ie of shear at support j of a continuous beam
external force at support j

variable parameters

values of 8, & , M, and F due to u = 1.0C and v = 0
values of 6, 5,3&, end F due to u = 0 and v = 1.00
dinamic stiffnesses for a bar, defined in Section 5
dynamic carry-over factors for a bar, defined in Section 5

dimensionless coefficients in expressions for K, Q, and T

modified stiffnesses for a bar, defined by Eqs. (9), (10) and (11)
effective flexural atiffrness for a bar, definsd irn Section i3

stiffnesses K, Q, T of all bars meeting at support or joint §

effective fiexural stiffness of all bars meeting at support or
Joint §

stiffness of a deflectional elastic spring

stifiness of an equivalent deflectional spring

stiffness of a rotetionel rsstrainv

dimensionless coefficlent in Bq. (14) for the deflection of a bar
aexiel force ia a bar

buckling lead for & bar hinged at both ends

5
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3
d = modulus of a continuous elastic subgrade
ws = circular vibration freguency for a ber on a continuous elastic
subgrade
5 = deflection smplitude of s sprung mass
«,8,y,0 = dimensionless coefficlente defined, respectively, by Bgs. (24).

(73), (74), end (50)
For continuonc platess

Xy ¥ = borizontal rectangulsr coordinates, The y-axis is taksn parallei
to the pair of simply supported edges

a, b = span lengtiis in the x and y directions, respectively, for a pensl
' of a plate

= density of plate material in a particular panel

h = thickness of plate in a particular panel
I = h3/12 = moment of inertia, per unit width, for a particular

pamel of the plate

n

Poissonts ratio

EI/1- V? = flexural rigidity of a particular panel of a plate

]

X = s
]

-§E{JE§5Z = a dimensionless parameter for a panel of & pleto

n = 1integer reprasenting number of balf sine waves in the distribu-
tion of deflections, slopes, moments, etc., acrose a plate
width a
Gj = maximm rotation amplitude along support J
Mj = maximm amplitude of bending moment at support §
Xy k = flexural stiffness and flexural carry-ovar factor for a panel

of a plate, defined in Section 35

ok R s R b e i

gty 2
PR 7 FEEC L RERIN E AR

31t



3T R PNy h"’:!-”g‘i

SRR L Lt

g

T E TR B DAY TRATE M AT

I

[ 3

2s Acknowledpaments

This inves*tigetion has been part of a research program on "Numericsl
and Approximate Methods of Stress Analysis" sporsored by the Office of Naval
Resesrch (Mechanics Branch) in the Siructural Research Laboratory, Department
of Civil Enginecring, of the University of Illinois. The material of this )
report has been drawn from a doctoral dissertation by A. S. Veletsos sub-
mitted to the Graduaste College of the University of Illinois. The disser-
tation wes prepared under the dlrection of rFrofessor N. M. Newmerk in the
Department of Civil Engineering. |

The writers wish to thenk Dr. L. E. Goodman, Research Associate
frofcssor in Civil Engineering, for calling their asttention to Lord Rayleights
paper (14), and Dr. J. G. Sutherland, formerly Research Assistant in\Civil
Engineering, for first calling their attention to Mr. Gaskell's paper (13).

The numericzl values reported in Appendix A of thie report were cal-
culated on the Electronic Digital Computer of the University of Illinois.
The governing expressions for these constants were coded for machine sclution S

by Mr. A. J. Carlson, Jr., Research Associate in Civil Engineering. Ac-

¥

L5

knowledgment of Mr. Carlson's part in this work is made gratefully. Apprecia-

5§ LA i

tion is finally due to Mr. D. Trimakas for the trecing of the diagrams.

o by

VUSRI



1 SEIRYRN

e AT WY £ TN e

-

IP——— W S Sl Btk el MR o

10
II. METHOD OF ANALYSIS

4e Basis of Method of Analysis.

The method used in this report is based on the fact that the ex-
citing ecouple or the exciting force which i1s necessary to maintain a dynamical
system in a steady-state forced vibration with finite emplitudes becomes equal
to zero at any ome of the naturai frequonciss of the system.

Figure 1 shows z members of a plane framework rigidly connected at

their common joint A. The fer ends of the members may be considered elasti-

cally restrained against toth rotation and translation. These restraints are

furnished by the portion of the structure not shown on the figure.

Consider that the frame undergoes a steady-state forced vibratiom

under the action of a harﬁonically varyling excitingrcouple applied at joint 3.

Joint z is assumed to be different from joint o. The magnitude of the exciting

moment is assumed to be such that the smplitude of either the slope or of the
internal bending moment 2t a joint of the structure different from joint z,

say at joint 1, bas a prescribed finite velue. The vibration of the structure

is harmonic and its frequency is equal to the frequency of the exciting couple;
since the effect of damping is neglected, the amplitudes of vibration are

constant and the response is either in phase with, or 180 degrees out of
phase with, the exciting ccuple.

¥or a given system, the magnitude of the exciting moment necessary

to maintain the prescribed amplitude of vibration at joint 1 depends on the

frequency of vibration. For the limiting case of no vibration, the magni-

Lihe moment is obviously finite; its actual value may, if desired, be

calculated by any of the availeble methods of indeterminate stress anaiysis.

As the frequency of vibration increases above zoro, the structure is acted upon

+ SO
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by inertia forces of increasingly greater ragnitudes. These forces, which
are distributed along the length of the individual members, bring about dis-
tortions in addition to those produced by the external moment scting stetic-
ally. Therefore; the smplitude of the dynamic moment necessary to produce

the prescribed distortion at joint 1 may be quite different from the magni-

tude of the corresponding atatic moment. As the vibration frequency approaches

any one of the natural frequencies of the structure considered, the inertia
effects predominate, and at a natural frequency the vibration is msintained

without any exciting moment acting permanently on the structure.

Briefly, the method vresented hereir consists of (a) choosing a fre-

quency of vitration, (b) determining the magnitude of the exciting moment

which, when applied at joint z, will produce a vibration configuration with a

fixed amplitude of slope or bending moment at joint 1, (c) repeating these
steps for a mumber of assumed frequencies, and (d) plotting the magnitude of
the exciting moment es a function of the frequency of vibrstion. The fre-
quencies for which the exciting moment vanishes represent natural frequen-
cies of the system.

In the application of ihis procedure, the following two conditions
must be satisfied: (1) The joint to which a finite amplitude of slope is
aasigned should be one that ia known to rotate for gll the natural frequsn-
cies that need to be determined. If instead of fixing the emplitude of
glope the amplitude of moment is fixed, it must be known that this moment
amplitude remains finite. (2) The exciting couple must be applied at a
joint which is known to rotate for &il the natural frequencies that need to
be determined. A couple applied at a joint which doces not rotate acte
$9e

throughi zero displacement and imparta no energy to the &tructurs; therefore,

it does not influecnce the natural frequencies or the vibration modes of the

P o1 Beon
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system. 1In such a case, the exciting moment may not varnish at a natural

frequency.
If either - iLnese conditions i1s not satisfied, the procedure

will fail to revezl some of the natural fregucncies of the system. It

will be shown later that, for certein structures., i1t is impossible te
satisfy these requirements. In such cases,; ir order to obtair. the nstursl
frequencies which the vasic procedure fails to reveal, it becomes necessary
to uae a suppiewentary tecknique as described in Chapter IV.

For an assuwmed frequency of vibration, the megnitude of the ex-
clting moment may be determined by & number of different procedures. The
conditions to be satisfied are simply those of equilibrium end continuity
for each joint of the structure. To satisfy the condition of equilibrium,
the sum of the moments ard of the forces at the ends of the members meeting
at a joint must be respectively equal to zero. To satisfy the condition
of continuity, the slopss of the members meeting at & joint must be equal

and also the deflection of the members meeting at the joiant must have the

same magnitude. These conditions mey be expressed in equation form in a

number of different ways and the equastions mey be solved by a number of pro-
cedures. In the method eadopted, these conditlions ars sxpressed in the form
of a generalized slope deflection equation, and the distortions of the
structure at the supports are computed by the repeated application of this

equation, working progressively from one end of the structure to the other.

5. Elastic Comstants for a Vibrating Raw.

The wvarious qugntities necessary to express the resistance to de-

formation of a bar undergoing steady-state forced vibration are defined in

this section.

nd’h ik

by




e gt pe AT R YT ST T TR

P POIT L T T T TN N T

Ty [ PRI

13
Consider a bar fg with the far end g fixed. Let the near end be
subjected to a harmonically varying bending moment of s circular frequency
W producing at that end a steady-state [orced rotation
O(t) = Bcoswt .
The smplitude of the impressed moment may be related to the amplitude of
the resulting rotaticn at end £ by the equation
M= K9 (1)
que ty K represents ithe moment required to produce & rotation of unit
amplitude and is defined hergin as the "dynamic flexural stiffnese™ of the

end of the bar being rotated,

The moment induced ;t the fixed end g may be written as
My= kKO . (2)
The quantity k is the ratio of the dynamic moment at the far fixed end to
the moment at the near end and is defined as the ''dynamic flexural cariy-
over factor",

In the analysis of continuous beams on rigid supports and of con-
tinuour frames for which the joints do nct translate, the flexural stiffress
and the product of the flexural stiffness and the flexura. carry~-over factor
are the only two quantities needed.

Th?.forggqipg definitions are generslizations of .these.originelly
introduced by Hardy Cross (12) for the analysis of frames subjected to static
loads, and they were first used by Gaskell (13), who extended and applied the
method of moment distribution to the problem of determining the steady-state
forced vibration of continuous heams and frames subjected to puisating losads.

For static conditions, the erd -eactions of the bar resulting from
the rotstion of one end, msy be determiued from the end moments by stetics.

For dynesmical conditions, this ias not possible, since tiLa2 bar is acted upon

"
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generally unknown. The reactions must, therefore, be defired by sdditional

constants,

The amplitude of the vexrtical reaction at the end'being rotated may
be vritten as
Vi = Q6 , (3)
aid the reaction at the fixed end may be written as
Ve~ —9Q0 = -9 . (4)
. The quantity Q represents the reaction at end £ produced by a
rotation of unit amplitude at that end and is defined as the "dynamic
flexural shear stiffness™. The quantity g rspresents the ratio of the re-
action induced ai the far fixed end to that produced at the near end and

is called the "dynamic flexure-shear carry-over factor”.

Consider now that end £ is subjected to a harmonically varying
fbrce.producing at that end a steady-state forced deflectior without
rotation, such that the magnitude of the deflection is

5(t) = Scoswt .

The amplitudes of the force and of the deflection at the left end may be
related by the expression

V = T8 (5)
The quantity T denotes the force necessary toc cause a deflection of unit
amplitude and is defined as the "dynamic shear stiffnsss" for the end being
deflected. The rsaction at the far fixed end may be written as

Vg < -iT6 = -tV (6)
The quantity t shows the ratio of “he reaction at the far end to that at the

near end snd is called the "dynamic shear carry-over factor™. The amplitude
of the moment induced &t the end being deflected is
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Mf = (25 . (7)
and the moment at the far fixed end is
My = Q6 = ¢M . (8)

The quantities § and q are the eame as those used in Eqs. (3) and (4). That
these should be the same follows from a reciprocal theorem givén by Lord
Rayleigh (14), which is the dynamic equivalent of Maxwell's Law of reciprocal
relatione.

Throughout this presentation, the members composing the structure
arc considered to be uniform. The stiffness snd the carry-over factors for

th ends of such members are egusl.

The notation used for the various stiffnesses and carry-over factors
is the same as that used by Newmark (15) in his static analysis of slabs con-
tinuous over flexible supports. The notation is summarized ir Fig. 2. The

derivation of the algebraic expressions for the various stiffnesses and

carry-over factors is given in Appendix B,

For certein conditions of symmetry, sntisymmetry, and for those
cases for which the.degree of restraint at the far end of a member is krown,
it is convenlent tc use effactive stiffnesses. The pertinent expressions for

these stiffnesses are the same as these for the static case. Expressions are

given here only for effective flsxural stiffnesses. The particular cases con-
sidered end the symbols used to identify them ares Kf, when the far end of
the ber is prevented from deflecting and is elastically restrained againsi
sny; X 4 wioen Loe far end is simply supportgd;‘EF, when the bar is on
rigid supports ard its deformation is symmetrical, and KF, when the bar is

uvn rigid supports snd its deformation is antisymmetrical. It csn be proved
reedily that

wodhtg g
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£ = K(1-k°) , (9
£ = k(1) , {10)
= k@) (11)

n
The stiffness KA of a given bar is also equal to the stiffness K of a similar

!
bar one half as long. The expressisn for X 1s given in article 12, where it
is used first.

It is possible to derive also expresazions for effective shear stiff-

nesses., However, these ere not, in general, as simple and convenient to use

as the effective flexural stiffnesses.

6. Mmerical Values of Stiffness and Carry-Cver Factors. .

A1l carry-over factors are dimensionless and depend on a single di-

mensionless parameter

L T i
A= [Er L (12)

in which m = the mass per unit of length of the bar,

W = the circular frequency of vibration, as previously noted,

]
n

the modulus of elasticity of the material in the bar,

I = the moment of inertia of the cross section of the bar abcut its
centroidal axis, and

L = the span length of the bar.

The various stiffnesses are determined from the expressions

k=ckEL . a-cth T=ctL, na

(%

vhere the C's are dimensionless coefficients depending on the parameter A

A graphical representztion of the veriation witk A of the various

carry-over facboré, stiffners coefficients, and of their producte is given in
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Figs. 3 thrcugh 12, It is noted that the curves in these {igures range be-
tween mfinus infinity and plus infinity. The A\ velues corresponding to the
zéro ordinates and to ths discontinuities of the curves, represent natural
frequencies of btars having standard boundary conditions. For example, con-
sider the curves in Figs. 3 and 5 for the flexural stiffness and the flexural
carry-over factor. Values of A equsl 10 3,927, 7.065 and 10.210 correspond,
respectiﬁely, to the first, the second, and the third natural frequencies of
d bar. Al these fregusncies, no exciting moment is required to
maintain the vibration; consequently, tke value of dynamic stiffness is equal
to zero. Furthermore, since the moment at the fived end of the bar has a
finite magnitude, the éarrya;}er factor for the member becowes infinite at
these frequencies. Values of A equal to 4.730 ani 7.853 correspond, re-
spectively, to the first and the second natural frequencies of a bar fixed
at both ends. At these frequencies, the end moments have a finits value.
while the rotations of the ends are zero; accordingly, the stiffness of the
member has an infinite value. For the case of no vibration, A =0, the

various quantities in Fig. 3 through 12 assume the well known static values
of

S _, EI _ ~ BI LR .4
k = 0.5 =45 KK = 2 3 £ =35
q = 1,00 Q=256 E% Q@ = 6 E%
L L
t = 1,00 r=128  ¢p=12El
1? 1’

Rumerical values of the carry-over factors, of the coefficients of
the various stiffnesses, and of their products are given in Table I of Ap-
perdix A, All values are reported to seven significant figures for the range

of A from zero to 10.20 at increments of 0.0l. In some cases, the accurascy
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of the seventh significant figure reported is uncertain. These vaiuss wers

computed by use of the Blectronic Digital Computer of the University of
Illinois.

ry

e Numerical Values of Deflectjons due to End Rotatlone.
Consider the beam ghown im Fig. 28 with the left end subjected to
a steady-state forced rotation ¢. The deflection amplitude of the beam at

a distance ¥ from the left end may be writtsn as

Y, = CeL , ()

where C is a dimensionless coefficieit dependent on the value of X and the
persmeter A . If 8 represents the rotaiion st the right end insteasd of at
the left end of the beam, the deflection amplitude at a distance X from the
right end will be equal to the right hand side of Eq. (14) multiplied by

‘minus one., The minus sign is a consequence of the sign conyention adopted.

Fmerical values of C are given in Table II of Appendix A& for suc-
cessive twelveth points of the beam for velues of A ranging betvwesn zero and
10.20. These Yalues were computed from Bq. (B-32) in Appendix B, by use of
the Electronic Digital Computer of the University of Illinois. The values
are reported to five significant figures, but to no more than six decimal
places.

The values in Table II may also be interpreted as coefficients of
dynamic fixed-end moment for & beam subjected to a puleating concentrated
force. This follows from Muller-Breslau's principle, which it can be shown
to hold true for dynemicael systems undergoing steady-~state forced vibrationm.

This principle, as applied to the dyramical cese, is presented 1a Appendix B.

§
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IIX. APPLICATION OQF METHOD TO CONTINUOUGS

BEAMS OF RIGID SUPPORIS

8. Gereral,

The beams counsidered are sssumed to be straight and may have any
number of spans of arbitrary length. At their extreme ends they may be
kinged, fixed, or only partially fixed by mesns of rotational restraints
which are assumed to be proportionsul to the end rotations. The cross section
and the mass per unit of length of the beam mey vary from one span tc ths
other, but in any one span these gquantities are ¢onsidered constant. It is
assumed that vibration is restricted to one of the principal planes of flexure
of the beam, and that the cross sectional dimensions of each span are amall
in comperison to its length so that the effects of shearing deformation and
rotatory inertia are negligible.

The supports of the beam are numbered successively from left to

right starting with 1 at the extreme left end and terminating with z at the
extreme right end.

The pcrtion of the beam between two consecutive supports d and i:l

is referred to as tke j~th spen. The quantities Lj’ BJ, IJ’ ‘xj, Kj’ and kj
refer to the j-th span.

O1 denotes the amplitude of rotation of the deflected beam over the
Jj-th support and MJ denotes the amplitude of bending moment across a section
at the same support. The subscripts I and R designate, respectively, sectioius

just to the left end just to the right of the support. M, demotes the ampli-
o

tude of the sxternal coupie at support j.
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2» Development of the Bssic Eqvrations, i

Figurel3 shows the extreme deflected position of spene j-] end j of

a eontinuous bear undergeing a steady-state forced vibration. The vibration -
is assumed to be maintained by an exciting couple spplied at the extreme right

end of the beam. There is no other exciting force or moment acting on the

system,

In Fig. 13, the rotations and bending moments et the ends of each
span are indicated ir their positive directions. The slope and the bending
moment at a time t for eupport J are

6;(t) = 6jcos wt, ond Mj(t) = Mj cos wt . (15)

In thoc equations to be used the coswt appears as & commcn factor; for con~
venience, this will be omitted, and in the remainder of this discussion the . :
terms "amplitude of slope" and "slope® and the terms "amplitude of moment®™ and
"j::ement“ will be used irnterchangeably.

To insure continuity and equilibrium of the beam over the interior

support j, it is required that

(O = G)r = 6 , (16)

wie

My = (Mo + (Mj)= =~ O . 17)

The moments (MJ)L and (MJ)R can now be expressed as functions of the

a0 Eanp' i

end rotations of the two spans us followss Consider span j. First, assume
that the right end of the spen is held fixed while the left enmd is rotatea

through an angle @ 5 3 then, the moment at the end being rotated is equal to

oo il

the product of the roiation GJ and the flexural stiffnese of ths =

SHUST n,e
J
Next, imagine that the left end of the spean 1s kept fixed while the right end

i

MY . o oenbe s

is rotated through & J+1; the moment induced at the fixed left end is equal %o

the product ¢f the rotation 6 341 end the product of the flexural stiffneas
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end flaxural carry-over factor of the member (k.K)j. Since the principle of

guperposition holds trus, the moment (MJ)R corresponding to the rotaticns °j
and 91*1 is the sum of these partial moments.

(Mjlr = K;j6; *+ (kK)j6j, . (18a)
Considering span J-1, one obtains in a similar manner:

Mide = Kj-§ *+ (8K);-165- (18b)
Substituting Bas. (18a) and (18b) in Eq. (17) end sclving for ej+1, oné obtains

the following equation relating the slopes over three consecutive supports of

a continuous beam:

(Kj-1 * Kj)Gj t (RK)j-1 Oj- .
R . | (i%a)

eju = -

This equation is a generalized slope deflection equation with the deflection
tern missing. It wiil bs referred to as the "th;ee slope equation®™. Egq. (19a)
is applicabie only to intericr supports; the appropriete reletions for the end
supports are given in the following paragrephs.

It is assumed that the extreme ends of the beam are elastically re-
streined against rotation. The relationship between the end moments and erd
rotations are

M, = -R6 . (20)

M, = “R:6, (21)
where, B‘l and Rz are the known stiffnesses of the rotational restrainta at
the left and the right ends, respectively., For a hinged ernd, R = 0, and for
a clamved erd, R = infinity. The negative zigns in these expressions follow

from the sign convention used and indicate that for a positive restraint,

wdiandihoaded
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the moment exerted on the beam by +ths restraint .cts in a direction opposite
to the direction of rotation of the beam.

The moments H.l and M, can alsc be expressed by the following equa~

tions, obtained respectively from Bgs. {18s) end (18b).
'
Ml . KIGI + (‘kK),@g 3 (188 )

M, = Kg.,6: + (%K), 6, . (18v')

t
Eiminating M; between Egs. (18a ) and (20) and M, between Eqs. (18b') and {21),

one obtains

(R[*K])el + (*K}, 92 - O , (218)

(Ke-*R:)6; * (RK),.,6,,= O . (22a)
At a natural frequency, both of these equations must be satisfied identically.
Fquations (21a) and (22a) apply only to hinged and to partially
fixed ends. For fixed enmds, the equations are gpecialized as ;‘ollows: For
6, = 0, the relation between the moment at the fixed end and the rotatiom of

'
the beam over the sscond support is obtained from Eg. (18a ) as

Ml = (kK),@z : (21b)

If the right end is fixed,

6 = 0, (22b)

and the critorion for & natural frequency is thst Eq. (22b) be satisfied.
The magnitude of the moment at the fixed erd is of no interast but, should

'
it be desired, it may be calculated from kg. (18b ), keeping in mind that 91=0.

10, Outline of the Procedure.

The procedure for arriving at the natural frequencies of 8 continuous

beam may be outlined as followss

e B bR ol
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A fixed velue is assigned to the smuplituwde of slope or bending
moment at the first support of the beam. Since the natural fre-
quencies of & syeiem depend only on the relative values of the do-
flection, any artitrary amplitude consistent with the actual bound-
ary conditions may be chosen. For & hinged or for a pertislly fix-
ed erd, Gl is taken, for convenlence, equal to unity; for a clamped
end, 91 is equal to zero, and &1 or Mi times the L/BI of some re-
ference span is taken equal to unity instead.
A trial frequency of vibration, w , is chosen and the A values for
all spans are evaluated. These calculations are carried out con-
veniently in a tabuler form, &s illustrabed in Bxample 2.
with the A values available, the flexural stiffness and the product
of the flexural stiffness and flexural carry-ovér factor for egch“
spen of the beam are found from Table I in Appendix A.
The rotation of the beam over the second support is ddtermined f?oh
Eq. (21la) or (21b). | .
By successive applications of Eg. (19), the rotations 8, to Oz are

3
cvaluatede A conveniun® tabular scheme for arranging the computations

is des~sribed in Example 2.

If support z 1s fixed, the determination of the rotation Oz completes
is hinged or is only partielly fixed, it is necessary tc carry ocut
the additional step of evaluating the left hand side of Rg. (22a).
Stepa 1 through 6 are repeeted for different assumed frequencies. and
ihe values calculated for the left hand side of Bg. (22a) or (22b)
are plotted as a function of the assumed freguencies, or what is

usually more convenient, as & function of the corresponding A
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values for some reference span. The zero intercepts of the re-
sulting curve which is, in generel, similar ir shape to that shown
in Figs. 16 and 1S, correspond to the natural frequenciss of the
system,

ils; Dstermination of Modes of Vibration

Since the rotations of the beam over the supports are eveluated in
each cycls of this procedure, the deflection configuraiion of the beam for
any desired frequency can ordinarily be sketched from these rotations., The
natural modes of free vibration may be determined “rom tﬁe rotations corre-
sponding to the natural frequencies in the same manner.

If it is desired to compute these deflections accurately, it is
necestary to use the nmumerical coefficients given in Table II. The de-
flection at any point within a &pan may be obtained by adding (a) the de-
flection produced by the rotation of the left end of the spen, sssuming
that the right end is fixed and (b) the deflection produced by the rotation
of the right end of the span, assuming that the left end is fixed.

12, Illustrative Examples,
Example 1. Consider a uniform beam continuous over five rigid

supports spaced equidistantly. The beam is simply supported at the left
end and fixed at the right end, as shown in Fig. 14, It is desired to cal-
culate its first eight natural frequencies and the corresponding nztural modes
of vibration. It is assumed that the beam is cut at the extreme right end and
then an exciting momemt is applied there. At a natural frequency, the magni-
tode of this moment mupgt be guch that the conditdon 65 =0 is satisfied,

The amplitude of alope at the extreme left end is taken equal to unity. Since
all spans are identical, rather than repeating the procedure outlined in Sec-
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tion 1C for each assumed frequency of vibration, it is more convenient to
derive a general expression for 95 and determine directly from this expression
the netural frequencies of the beam.
Let K be the flexural stiffness and k the flexural carry-over factor
far_ esch span. These quantities depend, of course, on the parameter A .

From Eg. (2la) one obtains

K _ _.L
%" "%k T " ®

Applying Eq. (1) successively to joints 2, 3, and 4, one obtains
8, = -K[el-4) K]+ K - =
e ] g
65=-K[ 3kk4 o kzzJ+kK= k-ez:ﬁa .

The expression for 95 was evaluated for several values of A and the results

were used to plot the curve shown in Fig. 16. The values of k corresponding
tc the assumed values of A were obtained from Table I. The A values cor-

responding teo the natural frequencies are

Order of Value of Order of | Value ofﬁ
An An An An
d 3.21 5 6436
|2 365 | 6 6.79
3 4e21 7 734
T sess [ 8 | 778

These values agree vwith those reported elsewhere (16). The circular netural

frequencies w, are obtained from the expression

A, [EI
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snd the netural frequencies, in cycles per second, are compulsd from

Wy
f*-’ = Y 4

In order to determine the natural modes of vibraticn, first, the k
values corresponding to the natursl frequencies were determined, and then the
expressions of 62, 03, and GA were evaluaeted. The results are summarized in E

the followings

i Orizgsof 91 02 . 03. -OL 05 ]
Tt I 1.06 | -.924 07T | -.383 0
2 1.00 | -.383 | -.707 .92, 0
3 1,00 383 | o707 | =924 0
4 1.00 924, 707 .383 0
5 1.00 .92, 707 <383 0 1
6 1,00 2383 | <707 | -.92% 0
7 1,00 -.383 -.707 .924 o
) 1.00 | -.92 707 | -.383 0 :

From these rotaticns, the shapes of the natural modes of vibration can be
sketched, For this pasrticular problem, the vibration modes were computed
by use of the numerical values given in Table II, following the procedure
described in the preceding Article. For the purpose of illustration, tke
computations involved in the determination of the first natural mode

( A = 3.21) are presented in detail.

Deflection of span 1 at successive 1/6 - points: :
for 6, = 1.00, 8, = O: 4] 128 179 163 103 «033

MO

0
for G, = O, gz = -092[&’ 0] 0031 0095 0151 0166 0118 0

totel: 0 0159 0274 0314 0269 0151 0] . H

Deflection of span 2 at successive 1/6 - points:

3
¥ o
o &
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for 8, = ~.924, 84 = O3 0 =.118 =~.166 «.151 =-.095 ~.031 O
for 8, = 0, 6, = 7072 C =024 =072 =.115 =.127 =.090 O
totals O ~al42 =o238 =o2606 =o222 =121 O
Deflection of span 2 at successive 1/6 -~ points:
for &, = ,707, 8, = O3 0 .09C L,127 .115 .072 .02, O
for 8, = 0, 6; = -.383: 0 .013 .039 062 L,069 049 O
totals 0  .103 L1606 L,177 W41 L0733 O

Deflection of span 4 at successive 1/6 - points:
for 94 = —0383, 95 = 03 0] —.0&9 —0%9 -0%2 -0039 —.013 o

The first six nstvral modes of vibration are shown in Fig. 17

Exampls 2. In ordsr tc 1llustrate several additional details of tﬁe
procedure and present a convenient tabular scheme for recording the compu-
tations for the general case in which the dimensions of the beem may vary
from span to span, we consider the four-span continuous beem shown in Fig. 15.
Only the first five nafural frequencies will be evaluated. The beam is as-
sumed to be elastically restrained at the left end and hinged at the right
end. The stiffness of the end restreint and the characteristics of the
various spans are shown in Fig. 15.

For convenience in carrying out thke calculetions, the natural fre-
quencied of the system are expressed in terms of the pertinent properties of
aome reference spen, say span r. In this particulﬁr example we take r = 1,

In terms of the A value of the r-th spen, the A value for any span ] is

S 4 m; ErIr L.l .
AJ ‘/ m, EJIJ Lr /\r . (23)

In terms of the 5% of the r-th span, the stiffness end the product of the

stiffness and of the carry-over factor for any span j are equel to the values

obtained from Table I multiplied by the dimensionless factor

TR RIOID |t GRL UM 2 VI 73 - W ',
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.corresponds to a clrcular frequency of vibration w =

F: I |
o= -—-L-Lb' =
N TEL L (24)

Equations (23) and (24) can be verified readily.

The quantities A;/Ar s&nd o sre evaluated in Table 1A. It should
be noted that the calculations in this table are independent'of the frequency
of vibration.

The trial-and-error produce tor determining the natural frequencies
of the system is carried cut in Table 1B. As an example of the use of this
table, a complete cycle of calculations is carried out for a trial value of

Ar= A, = 2.40. This value, shown encircled in the r-th line of Columm (2),
Gﬁigz &1, « The
L m,
arrangement of the various quantities in this table is believed to facilitate
the computational work and to feduce subs“antially the probability for errors.
The order in which the columns in this table are filled in is indicated by
the following sequencc of column numberss (1), (3), (2),_(4 and 8), (5),
(7), and (6)e Columns (1) and (3) are reproduced, respectiveiy, from Columns
(5) and (6) of Table A. The.,A values for the various spans in Column (2)
are obtained ss the product of the sssumed A, and each of the values in
Column (1). Columns (4) and (8) give, respectively, values of the stiffness
and of the product of the stiffness and the carry-over factor for each span,
in terms of E%Ei ; these quantities are obtained directly from Table I in

3
Appendix A, using tkte )\ values computed in Column (2). Column (5) gives the

EI
total stiffness of the spans adjoining each support in terms of -%%J; .

T
The value for the j-th line in this column is determined by taxing the svm
of the products of the values in Colummns (3) end (4) for lines J-1 and §.
Column (7) gives the product of the stiffness and of the carry-over factor

EI
for each span in tsrms of —EJE ; the entries in this column are obteined
T
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by multiplying the entries in Colwumn (8) by those in Column {3). Colummn (&)
givee the rotation of the beam over the supports. The first velue in this
column is unity. (Had tbhe beam been fixed at the lsi't erd., this velue would

heve been 7sro). Tha ssccnd velue in the column, 92, is evaluated from Eqg.

. _  (0.5000 + 3.6649) 1.0000 _
R 2+2555 = -1.8466

This operation is not indicated in the Tsble. (Had support 1 been fixed,
Eq. (21b) would have been used instead). The values of 93 to 8 are de-
termined from the values in Columns (5} and (7) bty use of Eq. (19a), which,
in terms of column members, takes the form:

(5);(6); + (G)j-y (7)j-4

Ojgs =~ ] (for j22). (19p)
_ 6.3061(-1.8466) + 1.0000(2.2555) _
] .Th!ls, B o 83 - - ] ] 20@330 -— 1&06185

The left hand side of Eq. (22a), evaluated at the bottom of the taktle, is
I
found to be equal to 17.55 E—-%Tl- ..
Since, for the assumed value of A, = 2.40, Eq. (22a) was not satis-
fied, this value does not correspond to a ratural frequency of the system.
I
The physical significance of the computed value of 17.55 'E%EI' is as
follows: the negetive of this valus divided by the rotation st
I,
R R e e N

9 1

represents the stiffness of a rotationel constraint which, if it were im-

posed at the right end of the beam, would have made the assumed fregquency
correspond to & netural frequency of the system.
By repeating several such cycles of computetion for different values

of A, s the curve in Fig. 18 was obtained. The first five critical vaiues

ARSI S l
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ere recorded on the figure. The corresponding circular natural frequencies

are

, 6.27 [LI,

S
- 242 [El
(WN)Z Lf m'
137 [ ETL

Guds = 5] "m
16-9 [ElL

(wy)y = &3 /=0,
LinJg L m,
240 | EI

(wy)s = it

If it is deslred to uvaluate these gquantities more precisely., the compu-
tations should be repeated for several additional values of A, in the
reighborhood of the critical values, and the results should be plotted on
a larger scale.

The natural modes .of vibrafion,determihéd in the manner described
;n Section ll,-a;e shown in Fig. 19. It should be stated tliat, in genereal,
for the fundamental or lowest naturel frequency, the rotations of the beam
over the supports are not very sensitive to the magnitude of the frequency
of vibration. For some of the higher vibration frequencies, however, a
slight variation in the value of the frequency may affect the rotations
materially. Accordingly, the accurate evaluation of vhe rotations in these

latter cases may become somewhbat cumbersome.

13, Alternate Methods of Analysis.
As applied to continuous beams, the criterion for a natural-fre-

guency is that

faz =0 ; (22s)

It is presumed that support z is not fixed.

As has slresdy been remarked, the method used to evaluate Eé is

Ry = .t o e —
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merely one of 2 number of possible methods. It is the purpose of the follow-
ing discussicn to present several alternate procedures for arriving at the
same result.

The Effective Stiffrness Criterion, ‘The moment at a joint of a structure ;
necessary tc produce at that joint a rotetion of unit amplitude, while all
other joints e£r¢ in their sctual condition of restraint, is defined as the
"effective flexural stiffness" of the joint. This quantity depends on the
properties of all the members of the structure, and it will be denoted by E'.

Let K; represent the totel effective stiffness at the right haad

support z of a continuous beam; then, Eq. (22a) may be written as

ol } 3

K: 6 = 0. (25)
Since 6, is essumed to be different from zero, this equation is satisfied

- only if

K, = O. “  (26a)

Clilnd

It should be emphasized that Eqs. (22a) and (26a) express identically the
sau. condition, only in slightly different forms.

Equation (26a) represents the effective stiffness criterion for
determining natural frequencies. This criterion will now be applied by use i
of the moment distribution procedure and a procedure which, for want of
any better term, will be referred to as the "direct" procedure.

The Moment Distribution Procedure. Gaskellt!s adaptation of the method
of moment distribution (13) may be applied as follows:

and the fle

k] A Pramiannt Af vihwatian 4a aganmed
w mreauensy ot MphEavsan N oasnme

’

B

and the flexural carry-over factor, k, for each span of the be

ere computed from 7Teble I in Appendix A.
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2. With all joints of the structure, except joint =, fixed against
rotation, sn exciting moment is appiled at joint z producing a
rotation of unit amplitude st that joint. Obviously, the fre-
quency of this moment is equsl to the assumed frequency of vibra-
tion and the magnitude of the moment is equal to K;_,* Re .

3. This moment is distributed to the adjacent members in proportion
to their relative stiffness, and the proper proportion of the
balancing moment is carried-over to joint z-1.

Le Joint z is then locked, and the unbalanced moment at joint z=1 is
distributed, carried over, and balanced through the rest of the
structure. During thls process of moment balancing, joint z is
maintained locked.

5. The totsl moment carried back to joint z is determined. Finally,
the effective stiffnesa of the joint is computed as the algebraic
sum of the moment applied initially to the joint and the moment
carried back after all the other joints have been balanced.

é; Steps 1 through 5 are repeated for several frequencies of vibration,
and the natural frequencies are determined as those frequenciee for
which the effective stiffnesa vanishes.*

The "Direct" Procedure. The second procedure for applying the effective

stiffness criterion is presented in this section. Consider a bar on unyiclding
supports at each end with one end elastically restrained against rotation.
The restraint may be due to an actual coil spring or it may symbolize the con-

tinmuity of the bar with adjoining members. The stiffness cf ihe rssli-uint is

*At this point, attention ahould be celled to the fact that the method of
moment distribution does nct converge always to an answer. Therefore, this
method, which probably would appeal to many engineers, ia restricted in its
practical application. This fact is considered in somewhat greater detail in
Section 14.
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denoted by R. It cen be shown (17) that the effective ilexural stiffness of

the opposite end of the bar 1s given by the expression

; (RK)
K= K=-%37 (27)

This equation may be used to calculate the effective ebiffness of a
contimious beam as followss

l. A frequency of vibration is assumed, and the corresponding values
6f K and:gg for each span of the beam are determined from Table I
in Appendix A.

2, With the stiffness of the restraint B1 at the extreme left end of
the beam knowr, the value of effective stiffnses ¢of the first span,
Ki s i8 computed from Eqe (27). This value represents also the
stiffness of the rotational restraint 32 exerted by the first span
on the left end of the second span. By application of Egq. (27) to
consecutive spans, the effective stiffness of spans 2 to 2-1 are
evalueted, |

3. Having determined x;_l', the effective stiffness at joint z is
computed as K;-l + Rz'

Le As usuai, the foregoing steps are repeated for a mumber of frequencies
and the natural frequencies are determined as those frequencies for
which the effective stiffness vanishos.

In the foregoing discussion it was assumed that Oz = 0. Consider
nﬁw that support z is fixed; then, R, = infinite, Gz = 0, and Mé is finite.

But.,y since ,
M. = K..6: ,

Kz, = infinity (26b)

sl
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tacomes the modified criterion for a natural frequency.

The curve in Fig. 20 shows the ve.lation of the effective stiffness
iz of a continuous beam as a function of the fregquency cf vibration. The
curve was determined by the "direct" method end is applicable to the pertic-

ular beam corsidered in Example 2. The zeros of the curve correspond to the

natural frequencies of the beam; the discontinumities corresrond to the natural

frequencies of the besm assuming that its right end is fixed. The abscissa
of any other point of the curve corresponds to the natural frequency of the
beanm, providgd its right end is subjected to a restraint, the qtiffnesa of
which is equal to the negative of the value represented by the ordirsie of
the curve.

It should be pointed out again that the main method, which vas.pre-
sented at the beginning of this Chapter, and the effective stiffness m§thod
presented in the preceding paragraphs, are fundamentally alike. In the
former method, the moment at joint z necessary to produce a rotation of unit
amplitude gt joint 1 is determined, while in the latter method, the moment
at joint z necessary to produce & rotation of unit amplitude at the same

joint z 1s determined. The correspondence of the two methods can be demon~

strated further by noting that, if each ordinate of the curve in Fig. 18 is |

divided by the rotation of the beam 92 corresponding tc¢ that ordinate, the
curve will be transformed into that shown in Fig. 20. For example, for

a4
A, = 2,40 the ordinste of the curve in Fig. 18 is 17.55 == » and the
17.55 1EL
correspcnding rotation 6 = 95 = 21.463. The ratio 21’ el =
I b/ 043 Ll

h ]
8179 fﬁh* ia idantinal tn the corresponding ordinete of the curve in

7?4

Figc 20,
The effective stiffness method is similar to Porter's (18) and

Manleyts (19), (20) mothods of dstermining natural frequencies of torsional
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vitratlon of shafts, and is similar elso to Lundquist's stiffress and series
criteria for determining the critical buckling loads of structures (21). The
stiffness criterion hus been applied tc the determination of the natural fre-
quencies cf contimnmone beams previously by Mudrax (i), (2), (3). However,
Mudrak'!s method differs from the procedures described in this section both in
its development and in the form of its application.

The Mothod of Throe Moments. An slternate procedure for calculating the
nagnitude of the exciting moment ﬁi is provided by the use of the equation of
three moments, first applied to the study of steady-state forced viﬁrationa
by W. Prager (22). Hnmefical values of the various coefficients appearing im
these equations bave been published (23), (24) but,unfortunately, these
references are not readily accessible. In general, the three-moment equa-

tion can be applied in the same nanner as the three-slope -equation.

14i. Range of Applicebiliiy and Reletiive Merits of Various Procedures.

As previsusly remarked, the moment distribution procéﬂﬁ}e is of
restricted practical value. Céﬁfergence of this procedure can be insured
only for vibration frequencies which are smaller that the (unknown) funda-
mentel or lowest natural frequency of the system considered (13). Con~
sequently, the method can, in general, be used to determine only the lowest
natural frequency of a structure. Also, it might be important to note that,
even for vibration frequencies which are below the fundemental natural fre-
quency of a structure, the moment dietribution procedure may be so slow to
converge that it may be necessary to carry out & iarge number of distri-
butions to affect a solution. This process may be:ome rather time consuming,
especially whon appiied to structures involving a large‘number of members.

The "direct® methed Goes not offer any difficulty of convergence.
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It can, therefure, bs used to calculste the higher natur.l frequencies of
continuous bean '« In general, this procedure requirse s much larger number
of triels then the main procedure of this rsport. In asdditicn; it cannot be
extended to continuous frames involving closed perels. It is, therefore, of
restricted applicability, too.

For contimious beams only, the choice between the main method of
this report and the procedure based on the use of the thrse moment equetion
depends, to a large extent, on perscnal preference and on one's femilierity
witk the particular procedure. One major advantage of the use of the three
slope equatlion is thgt it gives a clear picture of the distortions which the
strugture undergoes during vibration. This feature is particularly important
becauses in practice, it is frequently desirable to have a rapid means of
sketching the vibration configuratipn corresponding to & given frequencye.
For the analysis of contimuous frames. equations in;blving the rotation of
the joints as unknowns are remerkably betiter suited than equations iﬁvolving
moments as the redundent quantities. The extension of the méin mnethod of
this report to the determination of the natural frequencies of continuous

frames without sidssway is presented in the fcllowlng Chaptler.
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IV. APPLICATION OF METHOD TO GONTINUOUS FRAMES
WITHOUT SIDESWAY

15. Gensral
This Chapter is concerned with the determination of the natural
frequencies of flexural vibretion of rigid jointed plene frameworks for

which the joints do not move. - The extension of the method to some rela-

- tively simple frames with sidesway will be presented in Chapter VI,

The Zremes considsred may have any number of members of arbitrary

length; the mass per unit of length ard the flexural rigidity of cross section

of the members may d;ffer from one member to the other; but in any one member,

- thess quantities are assured to remein constant. The simplifying essump-

tions'ma&e in the analysis are as followss The vibrations are assumed to
teke place in the plane_of the freameworke The chanée in length of the mem-
bers due to axial deformation, and the effect of the axial forces on the
bending moment in the members are neglecteds In addition, no account is
taken of the influence 6f axial vibrations. As before, the cross sectional
dimensions of ths members are considered to be small in comparison to their
length, so that the effects of shearing deformation and rotatory inert;a may

be neglected.

16, Basic Relations
Figure 21 shows g members of a structure rigidly comnected at their

common intersection v The far ends of the members are assumed to be fixed
against iranslation, but free to rotate subject to the restraint imposed by
the adjoining members. Assume that the structurs is in a stsady-state ferced

vibration under the action of some exciting moment applied at a joint differ-

ent from joint 0.
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Let 001 dencte the amplitude of rotation st end o of member gi, and

ejo denote the empiitude of rotation at end 1 of the same member. Similarly,
let Moj and Mjo be the corresponding moment amplitudes at the same ends.

Since all members are rigicdly connected at their joints,
60,"602"’--'-“"'6@‘: """" =0 =6, . (2812)

and Bj.= 6 . (28b)

Farthermore, since no external moment acts at joint o,

3

ﬁo :/vjo’+ az+ ...... +[‘7°J.+.‘ ..... +mos = Z’“’)oj =0 . (29)

J=1

The mdment HBJ mey be expressed in terms of the end rotations of

member oj by the relaticm

Moj = Kojby + (RK);6; . (30)
Substituting this expression into Eq. (29), one obteins Eq. (3185
‘§, § . . :
L. Ky8 t ). (RK),; 6= O . (31a)
J ! J=i

which expresses the ccnditione of both equilibrium and ccntinuity for Joint
o of the structures If only two members meet at joint o, Eq. (3la) reduces
to BEq. (198) for continucns beams.

If the degree of restraint at the fer ends of the members meeting
at a joinmt are known, it is convenlent to use effective stiffnesses. Assume
that the restraints et ends 1 and 2 of the portion of the strucvare shown in
Fig. 21 are known. Let K;l and K;z represent the effective stiffness of

members ol and 02. Then, Eq. (3la) may be written as
s s
(Kot Kop) 6, + [ KojB, + ) (kK6 =0 . (31b)
J=3 J=3

Equetions (30) and (31) are the only two relations needed in the analysis

of frames without sidesway.
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17 n Frame

The frames corsidered in thia section do not involve any closed
panels and have known conditions of reatraint at all external terzminals.
It i1s assumed that the joints of the frame do not translate.

Simple L-frames and portesl frames, such as those shown in Fig. 22,
act as continmuous beams on rigid supports. Their matural frequencies can
therefore be calculated by the procedure outlired in Section 10 of the pre-
cading Chapter.

. When applied to the ansalysis of contimmous frames, such as those
shown in Fig. 23, this procedure will, in general, reveal only a portion of '
the natursl frequencies of the frame considered. The failure of the procedere
to identify the complete aqt,of natural frequencies roaulté from the fact
%hat, for certain natural frequencies, only a portiog of the frame may vibrate
with finite.amplitﬁdea while the rest may remain sﬁationaryu The netural
frequencieé'cérreapﬁﬁdi;g to these modes, which will be referred to as "modes
of partial vibration®, must be determined by & supplementary procedure.

Consider any of the frames shown in Fig. 23, Let 1 denote the joint

of the frame at the extreme left terminal and g demote the joint at the ex-

treme right terminal. Without loss of generality, it may be ussumed that
Joint z is either hinged or elastically restrained. A fixed end may be
handled in the manner described in Illustrative Bxample 1. Assume thet the
structure is in a steady-state forced vibrstion under the action of an ex-
citing couple ﬁi applied at joint s. The amplitude of the slops or of the
bending moment at joint 1 is assumed to have some fixed velue. If the joint
is hinged or elastically restrained, the amplitude of slope is taken equal
to unity. If the joint is fixed, the amplitude of bending moment is taken

equal to unity instead., For an assumed frequency of vibtretion, it is

4l
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generalily posesivie to calculate the magnitude of the exciting moment ﬁs’ in
a manner entirely amalogous to that used for continuoas beams, by working
progressively from one end of the frame to the otker. Dy repsating this
procedure for several frequencies of vibration, the magnitude of ﬁz may be
plotted as 2 function cf the frequency. All frequencies for which the
magnitude of the exciting moment vanishes are natural frequencies of the
frams,

The natural frequencies determined by the previous procedure nay
not reprcsent tne complete set of natural.frequenciea of the frame, The
procedure ie based on the assumption that the amplitude of slope or bending
moment at joint 1 is finite. For contimuous beams this condition is satis-
fied for all mon-trivial natursl frequencies. For continuous f rames, how-
ever, bar 1-2 may be still even though the rest of the struclure, or some
portion of it, vibrateg with finite amplifudas. Obviously then, the pro-
cedure falls to reveal those natural frequencies for which bar 1l-2 remains
still. A second assumption implicit in tbe procedure described is that the
rotation of joint z is finite for the natural frequencies to be determined.
For ccrntinuous frames, this condition is not satisfied alweys. Therefore,
the procedure fails also to reveal the natural frequencies for which the bar
meeting at joint z is stationary. )

Figure 2, presents several natural modes of vibration for which
either bar 1-2 or the bar meeting at joint 3 is stationmary. The modes are

applicable to the particular structures shown in Fig. 23 and can, of course,

exist only if the dimensions of the various members composing these structures

gatisfy certain definite relations. It should be emphasized that natural modes

of partial vibration are peculiar to fremes and cannot exist in the case of

contimious beams.
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The technicue for determining the na‘ural freguencics for which

either bar 1-2 or the bar meeting at joint z is stationary consisis of

(a) calculating the frequenciss for which these comditicnz can oceur, and ‘
(b) ascertaining vhether or not these frequencies are natural frequencies of §
the system. The detsils of this suprlementary technique will be explained “
in the exsmples to be presented. = j
18, Illustrative Rxamples. :
Example 3., The simple frame shown in Fig. 25a has been selected i
for énalysis. To illustrate several features of the method, the bars
identified by (1) are taken identical whil~ the bar designatsd by (2) is

considered to have such dimensions that : - %

Egig:il_ll_, = 0.8
i

and - 2 022
Az = 73730

A = 0.85C02 A, >
The subscripts 1 and 2 refer to bars (1) and (2), respectivelye

For the sake of brevity, only one cycle of the procedure is pre-
aenﬁd. The computations are given for a value of A, = 3,30; this corresponds
to a value of A, = 2.74. The appropriate values of K and kK are obtained
from Teble I in Appendix 4. = reecsereeseresesrantty e

L 5L

for bars (1) Ky = 245720 == and (kK)l = 3.1375 ==
1

I

- ey

E.LIJ. 3111

= 3,4 — = 2o D :

for bar (2) K, =3 4051 "y and (l:K)2 2.4589 7 z;

The data necessary for the analysis are compiled on the diagrem in Fig. 25b. =

The =umber in parentheses opposite each jqint gives the sum of the stiffnesses
of the members meeting at that joint. The parenthesized number at the middle
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of sach member gives the product of the stiffness and the carry-over factor

p BL

for the member. Both quantities sre expressed in terms of I’l o The numbsrs

without parentheses denote the rotations of the various joints. These rota-

Al dah, e

. tions are evelnated ir the mammer described below, and they are recorded on

INE2FY

the diagram as they &re computed.
The procadure is started by taking Ml = 1.00 5‘{? o Then, @2 is
computed by application to jolnt 1 of Eq. (30), as |

1
e, = 3135 " 0.31873.

4 5

The rqtations 6, and O, are determined successively by application of Eq.
(31a) to joints 2 and 4. |

0

“ : GA = - . 0) 0, - 5‘0‘ o = -0.52256 .
— _ 825491 (=¢52256) + 3,1375 (.31873) _ :
S S 24589 =de 0L

The magnitude of the exciting moment is determined from Bg. (30), as

ﬁs = (1.4101)3.4051 311;1 + (-052256)2.4589 %li = 34517 ;‘{_1.

It should be noted that each of the foregoing operations can be carried out
with a single set-up on a desk calculator. -

Repesting this procedure for several values of A, , ths surve |

----------------
oooooooooooooooooooooooooooooooooooo
oooooooooooo

showr in Fig. 26 was obtained. The A, values corresponding to the natural
frequencies are recorded on the figure. The corresponding natural modes of
free vibration are given in Figs. 27a to 2/fy :

| The foregoing procedure is based on the assumption that the amplitudes
of both the bending moment at joint 1 and of the rotation at joint z = 5 are
finits. To obtain the natural frequencies for which M, = 0, tbe following
reasoning is used. Ir order for M, to be equal to sero, bar 1-2 must be !
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stationary; then, the rotation of joint 2 and the internsl bending moment at
the joint are also equal to zero. This condition requires that bar 2-4 be
stationary and thst 94 = My, = O. But with joint 4 remsining fixed against
rotation, bar 3-4 can oscillate freely only for frequencies represented by

values of
A,= 1007309 70853’ ¢ o ¢ 0 o @ (32)

During a natural frequency, every member of the structure vibrates with
the same frequency. Therefore, in order for these frequencies to be natural
frequencies of the entire frame, they mst be also natural frequencies of the
remaining portion of the frame (bar 45, in thi - particular case). The

natural frequencies of bar 4-3, considering that its left end is fixed, are
AZ=3092'7, 70%9, e & ¢ o o ¢

these correspond to values o}.‘
A.-": 4.730, 8.514, o o o 0 o o

Comparing the latter values with those given in Bg. (32), one concludes that,
within the range of frequencies considered in Fig. 26, A, = 7.853 and
M = 8.5l do not represent a natural frequency, while X\; = 4,730 does.
The natural mode of vibration for A, = 4.730 is shown by the solid curve in
Fig. 27g.

The natural frequencies, if any, for which 95 = 0, are determined
in e similar mannmer. 05 can be equal to zero only if bar 4-5 is stationary.
- ::.fa'y vivrate freely oniy at

Under thia condition. Gl; =

Ms = 0; then, bar 34 vi
frsquencies r epresented by the A values given in Eq. (32). Since membsrs
1-2 and 2-4 of the remaining portion of the irame are identical %o member
3-4, each of these members can vibrate with its ends fixed for the same fre-

quency; therefore, the A ; values given in Bj. (32) correspond tc astural

v
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frequencies of the frame. The natural mode corresponding te A, = 4.730 is
shewn by the dotted curve in Fig. 27g, while the mode corresponding o

A, =17.853 is showr in Mg. 27h.

It should be observed that the natural mocdes shown in Figs. 27c and
27g can exist for the same frequency. Of these three modes, however, only
the two are independent; the third is & linear combination of the other two.
In fact, from any two of thése three modes, one can obtain an infinite muzoer
of combination modes.

Within the range of ffequencies considered in Fig. 26, the complete
set of A, values ébrrespogding to natural frequencies is

(Ay)y = 359, 4022y 4s73 (double), 6,80y 7ebiky 7485, 8435

More involved frames may be handled by the same procedure. The |
technique for obtaining the natural frequencies corresponding to modes of
partial vibration is 1llustrated further by the examples given in Section 2].

Example 4. A sketch of the frame considered is shown in Fig. 28.
This freme is similar to that analysed in the preceding example. In this

case, the dimensions of the structure are assumed to be such that

i______‘ JBh
a4 &

and | A= 04751, , As= 1,30 A, , A= 090, .

To determine the natural frequencies of this frame, we proceed in
the usual manner and plot the magnitude of the exciting moment at joint 5 as
a function of the assumed frequency of vibration. The curve in Fig. 28
swmmsrizes the results obtained. It should be moted thetithis curve, un-
1ike that shown Lu Fige 26, 18 not continuous. The values of A, corresponding
to the first few natural frequencies are recorded on Fig. 28. It can be shown

that, within the range of the frequencies cornisidered, there are no ratural
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frequencies corresponding to modes of partial vibration. -
19. Glosed Frames, , ;
The application of the method to frames involving closed panels, 3
such as those sbown in Fig. 29, is described in this section ty refsrence i

to a simple example. The hypothertical two csiled rectangular frame shown

in Fig. 2%a 15 selected for this_purpose. E
| ‘The first step in the analysis is to assume that the frame is cut

at some convenient joint. In the example considered, the cut is introduced

at joint 6. Next, it is essumed that the structure undergoss a sieady-state

forced vibration with finite amplitudes and known frequencj. The vibration

is assumed to be maintaingd b} an‘exciting couple applied at the cutljoint

(Joint 6). If the frequéncy of vibration is equal to the natural frequency

of the frame, the magnitude of the exciting moment must vanish and the

amplitudes of slope on either side of the cut must be equal.

Fer an assumed frequency, the discontinuity of siope and the magni-
tude of the exciting moment'mny be determined in the same wey &8s for open
frames, by working progressively from joint to joint across the structure.

For the frame considered, Eq. (3la) is fir?t applied to joint 1.

It 18 noted that the resulting expression involves three unknownss 615 92,

and 93. Therefore, éz and 93 cannot be solved directly in terms of Gl alone,

as it was possible in the case of continuous beams and continuous open frames.

Instead, it is‘neceuéary te express 93 in terms of both 91 and 62. Next,

Bg. (31a) is applied to joint 2, and °i, is determined in terms of 4hc sams

two permanent unknowna 01 and 6,. By successive applications of the same

equation to joints 3, 4, and 5, the rotations 95, 864’ end 965 may also be 3
determined in terms og-el and 92. Euving computed the rotations of all

joints, tne exciting moment at joint 6 may also be expressed in teims of
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the two pormanent unknowns 91 and 62. In the applicaticn of this techniqus,
consecutive jcints must be selected in such an order that, when By. (5la) :
is appiied to a jocint, the resulting expreasion invelves only one new unknown.
This technique is an sdaption of Wilbur's acheme (25) of solving the set of
simulteneous squations resulting from the use of the s2lope deflection equas
tion.

Tom joint for which the rotetion i1a evaluated last in this procedure
(joint 6 in this c=ss), is the ona at which the atructure ie zenerally as-
sumed to be cut. The number of membera meeting at this Jdint must be equal
to the mumber of psrmanent unknowns used.
At a natural frequency
and e il PO P Sl (33)
M.=0. ‘
In terns of the two permanent unknowns 01 and 62, these conditions may be
written as
cnb * Cu6, =0,
Cu6 * cnb = 0, |
where the ¢'s ars constanta, the magnitudea of which depend on the asaumed

(23b)

frequency of vibration and on the characteristics of ell the members in the
structure. Equation (33Db) represents a set of linear and homogensous squa-
tions for the unknowna Gi and 02; these equationa have 2 solution different
from zero when the determinant 6f their coefficient is sero,

lc, Cul

1 =0, (34)
Cay c.,|

4, (6,8) =

This criterion of vanishing dstsrminent will fail to reveal
(a) the nstural frequencies for which & and 02 are simultaneously

equzl tw sero, and
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(b) the nstural freqwencies for whieh the bers meeiinz ci ihe eut Joini
(Joint 6) are stetionary.

The nstursl frequensies corresponding to the foregoing two conditions
may be calculated by the supplementary technique described in connection with
continucus open frames.

The single-bay multi-story frame shown in Fig. 29t may be nandied
oy the ssma procedure. The rotations of its jointe m=y be expressed in torms
of 6, and 62; the cut may be introduced at joint S or 10. For the amlﬁia
of the two~bay multi-story frame shown in Fig. 29c, one needs to take three
quantities, say 8y, M,, and 93. %8 permanent unknowna. The cut must be

introduced at joint 14. The corditions of continuity and equilibrium for
this joint may then be expressed so

an.n-en,u = €6 tchB*tcyG =0,
O~ G = @ tcuBy* Cpby = O,
Me = Cub *Cuby? o6y = O,
vhere the 9_'- are numerical constants. The criterion for a natural fre-

quency isa

S S Co
_An(aunuea) o Cy Cm Cyui™ 0

Cxn ©Sn C»
It is seen that, for this problem, it becomes necessary to evaluate a third
order determinant. For the genersl cave, the ordsr of the determinant is
squal W ULue number of Vue pormaneni unknowne inay musi be used in evaliu-
eting the rotestions of tha joints,

The computstional work required to calculate ilhs exciting moment

and the discontinuity of slope at the cut, may gei fairly involved, particu-
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lerly if mors than two quantitias mvet be used as permanent unkneowrs. One
may simplify this work considerably by carrying out the computations ia
partss Consider egsin the fyame shown in Fige 29« First, assume that
91 = 1.00 and that 92 = 0, Calculate the rotations of the jointa in ths
usual manner, and designate them by G'. Caléulata alsc thg magnitude of
the exciting moment at the cut joint. Designate this by 'ii. Next, assume
that 91 = C 2nd that 92 = 1.00, and calculate the corresponding rotations
and moment. Denote these by 9' and 'ﬁ', respectively. Then, the actual

rotation at 8 joint § 1=
9, = 9.0, + 6,0 (358)
3= 9%+ 8%

ard the totel exciting moment at the cut joint, say joint J , is

| - - § -
= 4

HJ : ujelj M"Az . (35b)

The direct combination of these pertial effects is justified by the fact

that the diffaren_tiai equation for steady-state forced vibration is linear.

20, Outline of Procedure,
The procedure for determining the natural frequencies of con-

tinuous frames involving closed penels may be cutlined as followss
1, For some member of the freme, say member r, assume & value of
4/
A.= ./—?:I—af Ll + This i1s equivalent to assuming a frequency

of vibration w .

T e=r--—.....2+ From Eq. (23) compute the A values for the remaining members of

the frame.

3, From Table I in Appendix A, calculate the appropriate values of K
and kX for each member. These valuss,as obtained from Table I,
are expressed in terms of E%ﬁ s where the subscript j refers to

the particular member considered.

¥4 . 3 A 1 \ doadit 1
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I'xpress ths quantities determined in step (3) in terms of the
EL of the reference member r, by miltiplylng them by the dimen-
sionless sosfficient oy (Bq. 24).

various joints and reccrd these values on a diagram of the frame.
On the same diagram record also the product of the stiffness and
the carry-over factor for each member. These quantities must bo
ézrﬁ'eaﬁed_ in terms of the % of the same reference member r. 4
convenient schsme for arranéing the computations is shown in tioe
illustrativs @Mes presented in the next section.

Choose the unknowns in terms of which the distortions of the freme
will be expressed. In general, the mmber of unknowns that must
be selected iz equal to the number of the main'iong1£ud1na3
meﬁbers in the frame. For the frame shown- in Fig. 29a, ove may

take 81 and 9-2 as the two pemanentmtmh:\om.

'Co;wider the first of these quantities equal to wnity and the

other squal to zero (01 = 1,00 and @, = 0). Horkiné across the
structure. as described in the preceding section, compute ths
rotaticns of the joints. Demote these by €'s Compute also the
exciting moment and denote it by M. |

Repeat step (7), teking the second quantity egqual to unity end
the first equal to zero (Ol =0 and 8, = 1,00), Denote the
resulting rotations by G' and the exciting moment by f(.. In

there are pe:mnent unknowns.

Determine the total discontinvity of slope and the total ex~

citing moment and set each expression equal tc zero., For ths

R T TSR TR A e TR T A0 Ly SR e e ) R e ™ T T e L e e i R 1 o
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frame considered, these expreseions will be
(6~ 3s)6 + (Bla-G)6; = O, )
{33¢c)

4

M6 + M6 =0,

10. Bvaluate the determinant of the coefficilents of 01 and 6, in the
expressions of Eg. (33c).

11. Repeat steps (1) to (10) for different values of Ar

12. Plot the veriation of the determinant evaluated in step (10) as a
function of the A\, values. The frequencies for which the deter-
minant becomes equal to zero are natural frequencies of the frame.

The foregoing procedure fails to reveal the naturzl frequencies

for which the permenent unknowns (61 and 92) are simultaneously equal to

~zero, In additién, it fells to reveal the naturel frequencies for which

the members meeting at the cut joint are stationary. A supplementary
procedure for deﬁermdning these natural frequencieéﬁhas been described,
and its details are illustrated further in the two numerical examples

that follow.

21, Illustrative Examples.

Example 5. The structure considered is shown in Fig. 30a. All
members are assumed to be uniform and identical to each other. It is de-
sired to calculate the natural frequencies and the corresponding natural
modes of vibration of this frame for a range of values of A 1lsss tham 6.50.
Since all wembers are idertical, rather than repeating the procedure out-
lined in Section 20 fcr each assumed frequency, it ig more convenient to
derive a general expression for the criterion for & naturel fregquency and
determine directly from this expression the desired quantities. This is

similar to what wes done in Section 12 for Example 1.
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Iet K be the fiexural stiffness and X the flexural carry-over
factor for each member of the frame. These quantities are, of course,
functions of the parameter A ., The sum of the stiffnesses for the varl-
. ous joints and the product of the stiffnees and the carry-over factor for
each member of the frame are showm in Fig. 30b. The rotations cf the
Joints will be expresased, not in terms of 6, and 9 ,a8 it wes suggested
in the preceding discussion, but rather, in terms of 91 and the internal
bending moment'MlB. ‘The reasor. for this choice will beccme apﬁarent
shortly. The frame ia assumed to be cut at joint 6. First, it is assumed
that MlB =¥ = 1.00 and §; = 0. Applying Eqe (30) to ends 1 of members
(1) and (2), one obteins
! | =ik
-k
Similerly, applying Eq. {(3la) successively to jciﬂts 2y 3¢ 4, and 5, one
obtains

= 2
K[E + 'k(o) ,ka 2

' 5
65=’KL[3(47K) + %(0) + R 752—]— kK = -~ 2%

&= K [3(7%)+ #- R)“"FR] KK = =K
% [(?‘/**4«] *K = TR

s The discontinuity of slope at joint 6 is

) g * IG
Oce = s = K

and the exciting moment at joint 6 is

. L o)+ %[ )+'k("F5R')] =B (a+47)

L i }

YRk

3
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"
Next, it is assumed that Ml = 0 and 61 = 1,00 The rotations ©

are obtairned in a similar manner. The results are

" l
%a—Tl
0 = -4

6, = ’K[Z(-%).t'k ~ kK = ZJ;:'- ;

6}"K[:3(-—;!-)+ * + ﬁi;-.'f—t]-:- &K = —4'?- ’
& K[ v )+ 4 4)] = e = G2
QKo + 4]+ ok = KeF

The discontinuity of slope and the exciting moment at joint & are
” » . 5*2'6 *t- 2 4
6“ - 6‘5 * {?’ = . ‘k’ - ? (*1_,) =

T 4.2 7 v
M= K[Z e k—é;J = S (3R -I2-#)6, .

The total discontinuity of slope and the totel exciting moment

at joint 6.are

6‘,'96, = ?%(' (#‘IG)M; t ’4?'(*"‘)6; ’

ﬂ __3 23 K k3 - 4¢ (36)
o =R (FHRIN, + S5 (BKR-12-%76, .
The determinant of the coefficients of 91 and Mi is
- 184
a,(m.8) = - - & UR+1BE (37)

The curve in Fig. 30d shows the varistion of this determinant with
A o The values of k and K corresponding to the various velues of ) were
nbtained from Table I in Appendix A. The %ero intercepts of this curve rep-

resent natural frequencies of vibration. These values are indicated on the

fignre.
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The vibration modes corresponding t= & natural frequency are
determined as followss First, the relstionship between 91 and M; is deter-
mined by setting either ui the expressiones in Eq. (36) equal to zero. Then,
the rotations of the joints are svalvated, in terms of either 91 or Hl’ by

use of the relstion

] n
o = 9;":_%1’ + 0,0,

In this perticulsr case, the rotstions were expreesed in terms of 91. The

results sre summariged in the following table.

Value of - | ©,/8 | 6,/8 - | 6,/8; | 8./0, 6./,
An J,==
T ~1.00 -1.00 1.00 1,00 -1.00
34556 ~1.00 0 0 - =1.00 1.00
- 3.805 | 1.00 =1.333 | -1.333 1,00 | 1.00
4048 -1,00 1.333 | -1.337 1.00 -1.00 |-
40298 1.00 | © c - =1.,00 -1.00
2T 1.00 1.00 1.00 1.00 1.00

It should be noted that the value of Ay = 44730 is not included in this
table. For this value, as it willfollow from the discussion of the succeed-
ing paragraphs, there is an infinite number cf pcseible netural modes=.
Such modes cannot be determined by the procedure described. From the
rotations in the above table, the deflsctions at the imteridr points of the
members may be obtained by use of the influence coefficients given in Table
II of Appendix A. The natural modes corresponding to the natural frequen~
cies determined in Fig. 304, are shown in Flg. 3la through 31g.

The next step in the solution is the determination of the natural
frequencies for which 91 and M; vanish simultaneously. &, and Ml may be
equel to zero only if both bare (1) and (2) are stationary. Under this

condition, bar (3) also is stationaky and joints 3 and 4 remain fixed against

b
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rotation as shown in Fig. 30c. For the range of A values considered, bar e
(¢) can executs free vitrations with fixed euds only at a frequency represent-
ed by

A = 44730,

. .
L B AL D

*¥alg

Since all members of panel 3=4~6-5 are identical, each member can vibrate
at this frequency with fixed ends; therefore, A = 4.730 corresponds to &
natwral frequency of the frame. The vibration mode corresponding to this
naturel frequency is shown in Fig. 31h. .
The conciuding step in the solution of the problem under con- i
sideration is the determination of the natural frequencies for which the
members meeting at ‘a8 joint 6 remain statinnsry. Proceeding in the manner
described in the preceding case, it can be shown that, within the range of
A values considered, A = 4.730 represents a na£ura1 frequency for which
bars (65 and (7) are stationary. The vibration mode corresponding to this
natural frequency is shown in Fig. 31i.
It should be observed that the natural modes shown in Figs. 31f,
31h, and 314 can exist for the same frequency of vibration. However, of
these three modes only two are independent. The third is a linear combin-
ation of the other two.
Had the distortions of the frame and the exciting moment 'i% been
expressed in terms of 01 and 82 insteed of in terms of 61 and Ml’ the basic
procedure would have falled to reveal the natural frequencies for which
61 = 92 = 0. In othar words, the curve in Fig.30dwould not have inter-
sected the A-axis &t A = 4.730. Of course, this natural frequency would
have been determined by the supplementary techniquse.
Bxample 6, As a further illusiration of the application of the 3

method to continuous closed framee, the symmetrical frame éhown in Fig. 32a ?
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is sclected for analysis. All colwms sre considered hinged at the basc.
It is desired to calculate natural frequencies corresponding oniy to
symmetrical modes of vibration. Since for symmetricel vibrations the
Joints eof ths frame, even though free from external restraining forces,
do not translste. the msthod of this Chapter is directly applicable to the
problem considereds The effect of symmetry is taken into account by using
for the girders of the central bay modified stiffnesses §§ instead of the
usual stiffnesses Ko

The dimensions of the frame and some additional data pertinent

in the analysis are assembled in the table below. Member (2) of the frame

is taken es the reference member. Columns (5) and (6) of this table give,

(1) (2) (3) (4) - (5) 6) (7)

L m af, L; A -
venber) . 3 Ei-ti F | [ o &
1| 0,50 | 0.62 | 09294 | 1.00 0,929, .67 . | 2.04
2=r | 1.00 -| 1.00 {3,000 [ 1.00 1.000 1.00 | 2.20
3 3.00 | 1.75 | 1344 | 1450 1.716 1.1667 | 3.78
4 3,00 | 1.50 | 1.1%9 | 1.125 1.338 1.3333 | 2.9%
5 0.40 | 0,45 | 0.971° 0.75 0.7282 0.600 | 1.60
6 | 0.50 | 0.625] 0.9457 | 075 0.7093 0.83333| 1.56
7 | 2.00 | 1.25 {1125 | 1.° 1.687 0.83333( 3.71
8 | 2,00 | 1e25 | 1.125 | 1ol * 14265 1.1111 | 2.78

respectively, the ratio of 2; /X; (Eqe 23, »nd the o<.j values (Eq. 24) for
esch member of the frsme. For the sske of bre-ity, only one cycle of the

procedure is presented. The computations are givern for a value of 3\2 = 2420;
(2.20)* /EI

iz /Tm
The of values of the various members are recorded also on the dia=-

this corrssponds Vo & circular vibravion frequency w =

gren in Fige. 32b. The nunbers without parentheses ebove these values give

o i
1% s Al g
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the stiffness of the various members, while the parenthesized numbers below
the valués give the product of the stiffness and the carry-over factor of
the members. These quantities are expressed in terms of the %} +6f the mem-
ber to which they recisr, and they are obtained directly from Table I in
Appendix A.

On the diagram in Fig. 32c, the number in parenthesis opposite
each joint represents the total stiffness of the members framing inte that
Joint. These stiffnesses are expressed in terms of the %% of the reference
member {2). Thus, the total stiffness of the members comnecting at joint 4 is
E, = 3.7675x1.00 + 0,91884x1.1667 + 3.9430x0,83333 + 0.54510x1.3333 = 8.8521 .
The parenthesized mmber et the middle of each member represents the product
of the stiffness and the carry-over fsctor for ihat member; these values
are also expressed in terms of the -l of the reference member (2).

Thé rotations of the joints are expressed in terms of 91 and 92
Tre frame is assumed to be cut at joint 5 (and joint 5 ). First, consider

that

91 = 1,00 and 92 =

Applying Eq. (30) to joints 1 and 2, one obtainse

0.

o! = M = -1.7993 ,

3 144262
g' e 3.7675 x O = 0 .
4 21764

As usual, these values are recorded on the diegram as they are computed.

Applying Eq. (31) successively to joints 3, 4, and 6, one obtains

. L X MrAanAa\ . o ~e Anns Inn
953 — e U.\JUV)\F.LOI77J[ hd .Longs);\.l.ouu‘ ‘ 22&!\}‘ = 7.6273 5

L] O+ 5,5 =17 + 0 -
96 CoHC 10 024‘ = 506359 >
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' 5.3103(5.6259) + 0 _
85, == 325544 =820 =

The umbalanced axciting moment at joint 5 is computed as

ﬁ; = 1,2285(=1.7993) + 236(7.6273) + 1.0522(~8e4201) + 345544(53103) = 26,979 .

Next, consider that -, : i
91=08m02=1000¢
n y
The rotations @ care.oamputed in the same manner and the results ars recorded
on the diagram above the values of 9'.
The total slope at a joint, say at joint 6, 1is
The total discontinuity of. slope and the total exciting moment at

Joint 5 are

856 - 953 -16;04701 - 18.22368, ,

T M, = 26,9798, + 33.9316, .

The value of the &eterminant éf fhe coefficients of 91 end 6, 18
|tz -18.223 |
45(6,.8;) = = ~52.85 .
' 264979 33.931

Since this is different from zero, the assumed valus of A, = 2,20 does not
correspend to a natural frequency. Repeating this procedure for several
values of Az and evaluating, in each caese, the resulting determinant, the
curve given in Fige. 33 was obtained. The values of A, corresponding to the
natursl frequencies of the frame are recorded on the figure.

The next s.ep in the solution is the determination of the ratural
irequencies for which 91 and 92 are simllaneously equal to zero. Gl and 92
can be equal to zero only when bars (1) and (2) are stationary as shown in

Figo 3480
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Uider this condition, bers (3} and {4) can vibrate freely only at frequencies
equal to the natural frequencles of these bars for the condition of fixed
ends. For bar (3), these natural frequencies are represented by values of

As = 447305 748535 10.9%, = o o o (38a)

4

The equivalent values of A, are
’Az = 20756' 4e576, 604%, e o 00 (38b)

For bar_: (4), natural frequencies cofresponding only to symmetrical modes
| mat be considered; these are given by values of o
A¢ = 4e730, 10.9%, o o o o L (39)
which are eqniyel_ent. to - .
)Q = 34535, 8:218, « . e (39b)

*.

oIt ia novw neceseary to ascer‘ba:ln whether or not these f.requenciee

»

are natnral frequencies of the portion of the frame composed ef _bera (5),
6), (7), and (8). To do this, it is necessary to carry out one cycle of
the basic procedure for each frequency to be invegtiga'bed. For the pur-

-pcae of illustration, three different frequsncies will be considered in

WW%WW&MMWMN&&MMW%WW. o S

aetaiio =

{8) A;=2.756 ( Ay= 4.730). Since none of the valuss given in
Eq. (39b) is equal to 2.756, bar (4) must be stationary; this means that

MM!=°.7

The condition of equilibrium at joirts 3 end  requires that

Uy, =My <m0 Mg = =My,

Since, for the ) value considered, the deflection of bar (3) is symmetrical

’ M3 = M, =y,




s e v e AT

|
’!

=3
. ..m : ..\ iim

1 60
E " The joint rotetione of the freme msy now be expressed in terms
) ".3 hish, for convenience, sy be taksn equal to 1.0C % o Starting

from joint 3 snd considering th-t !3 = J, one may detormine ths rotations of

-

jointe 5, 6, and 4 in the usual manner. If J); = 2,756 is a natural rroqunncjr, &

e i 4 MGG RBAOBL

“-the computed valua of 64 must be equal to serc and HM must be equai to

Y

- | . , T
The data necessary in carrying out thess computaticzs are assembled

in the Zollowing tab 2 and in a Flgse 34b and 340.

/A | 1000 | o282 | 1.687 | 1.5 | o0.7093
N | 27% | 2e00 | 465 | 349 | 195

-

1
- ey ey

~

In Fg. 34b the stiffnesses are oxpa-uud in terms of -the n or the zwnbor

SO EUSARR PO P PP TSI Y A8 Y TN 2 T SRR ATV WY 7R Y O T IOV A 40 R

~ to which they refer, while 1n Fge 340 they sre expreued in 'boma of :%22 .

The rotation 05 18 computed by oppliution of Ba» (30) o JOJ.!W 3 while 06

and 04 are oomputod by use of Bge (31)e Since the oompntod value of 04 is

—— B ——
[ 3]

different from gero; Ay = 2,756 does not roprount s natural frequency of
 the tra'?o. .Ir_o" vere found to be squal to sero, it would have been nec-
essery to investigate also if u“ \.nro equal to ~1,00 E%? .4
. (D) Az = 4576 ( Ay = 7.853)s In this cese also, bar (4) is sta-
tionary, bdbut M“ is equal to +M35 1natud of -“35’ In all other respests,
the details of the analysis are similar to those of the previous case. The
pertinent computations sre given in the fdllsying table and in Figs. 344

and 3,

.l;. H 40576 3,33 772 5.79 3.25

.
).
-
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Since the computed valus cf 8, 1s different from sero; A, = 4576 does not
correspond to s natural frequency. _

(6) D¢ = 3.535 ( A, = 44730). Since none of the values giver iz
Eq. (38b) arecaqual to 3.535, bar (3) in Pige 34s must be stationary im thia
casse This mesns that bars (5) and (7) are stationary also and that joints:
4 und 6 remain fixed against rotetion. - It follows that, if A2 = 34535 is &
natural frequoncy, each of the members composing penel 1 4e6-6'%" must be
oapable of vibrating tzeoly with the spds fixed. For bar (6) this ic poss-

ible for valuss of ' _ Ve

¢

Ae = 44730, 74853, o o o0 (408)

‘while for bar (8) 1t is possible for values of _ ‘ |
T g = 4730, 10994 o 0 s 0  (4e)

The corresponding A, values ére, respectively | _
A = 64669, 11,071y o ¢ o 0 (4op)
- Ae = 347395 846929 o « o o C (4b)

Since these are different from 3.535, }\, = 3o535 does not comapond to a
natural frequency. It is worth noting also that the ), values givem in Eqs.
(40b), (41b), and (39b) are different. It is, tberefore, concluded that,
within the range of ths frequencies cdnd.d.red, the panel formed by the
members (4), (6), and (8) cannot vibaq’a; freely while the rest of the frame
remains stationary.

The concluding step in ths solution of the problem under considsra-

J

tion consists of inveatigating if there are sny natural frequencies fcor which

the baras maoting at joint A sre atstionary.

When bars (5) and (7) are stationary H35.= %s # O and joints 3 and
6 remain fixed against rctation as shown in Fige 351 Excluding the trivial

case of no vibration, this condition can occur only at frequencies equal to

[t o
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the natural fraquenciss of bar (8), esswning that it is fixed at the ends,
ond of der (1), assuming that joint 3 is fized, For bar (8) the first two
of these natural frequencics are represeated by the ) valuoe given in Eq.
(41). Yor bar (1) the first two natural frequencies are given by values of
| | A = 3,927, 7.069 o (42e)
which sre 'oquivaiént to _ T

‘ Ap = hogdSy 74606 (1.2b)
It remaina now to inve&tigoto whatuar thoae values nmaent nattml fre-
quenciea of ths frame shown in Fig. 35a. Only two frequenq;po will be eon-r'.
sidered_-in detail; the others nay bs haadledr in a similar manner,
(a) 2 =' 3,739 ( Ag= 44730), Since ncne of the values ',,..ven 1n
Eq. (42b) are oqunl to 3.739, bar (1) cannot vitrate freely in this caae;
consequently, both ‘om (1) ard (3) must remain still and Joint 4 must

remain fixed againat rotation ss shown in Fig. 35b, If A, = 3:.739 reprbaenta__

trqatura_l £ 1« Juency, -each member of - uhe'frme in this figure must be capable
of vibrating at the same frequency. It has already been shown that this

condition is not possible for penel 4ebt'=4's Tt remains, thorefore, to

ascortain whether panel Z-44 -2' osn vibrate freely. The first two pstural
frequencies of bars (4\ and (2) are repreaonted respectively by values of
Ay = 3.535. 8.218
| Az = 34927, 7,069
Since the 3, values for the two bars sre umequal, it is concluded also that
pane.l. Rl =l .-2. carnot vibrate freely while the rut of the frame remains

C still.

(b) A =4.225 ( A =3.927). In this case, bar (8) cennot vibrate
freely; therefore, barl.{;(s) and () in Pig. 35a are stationery, and the rota-
tion of joint 4 is serc as shown in Fige 356. This meens that each member of
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the frame showa in Fige 35¢ must behsve ss if it were fixed at Jolints 3 and 4.

" The A, values for whick this condition can be ¥salised are different for the

different members; ccnsequently, Az = 4225 doems not correspond to a natural
frequency.
Tn summary, it should be stated ih:t for this particular problem

-and for the range of frequencies considered, the szero intercepts of ihe curve

1in Fig. 33 represent the complete set of natural frequencies of the frame,

22. Comments on Natural Modes of Partial Vibration.
The determination of the natnral frequencies eorreaponding to modes
of partial vibration is not as tedious as it might sppear from the space devoted

tn its discussiocn 1n the preceding aéct:lons. F\:.rthermore, it ahonld be no'bed

that, for most practical applications, it may be entire]y unnecesssry to cal-
culate these natural frequencies. As alreaay ezplained, the procedure for
determining these mtural frequencies consista of (a) couputing a number of
frequenc:les; ax—xd“(b) establishing whether or not those frequaneiee are- natural |
frequencies of the»frnmo.'_ In ...ost -actual mblema, one is interested in
determining natural frequeng:lea comprised within speciﬁ.éd rangea of freqnen;
c':lea.. Therefore, if the values calculatsd in the first 8tep of this prot;edure
are found to lie outside the raﬁges of interest, it will be superflucue to
carry out the second step. The first step of the pcrocedur;_' can usually be
carried out almost by imspection.

Katural _modee of partial vibration correspond always to higher
ngtural frequencies. Therefore, no considerstion need be given to these
Eodss, if only the Tundumeniel nwiural frequency of a frame is to pe deter-

mined. The fundamentel natura.i. frequency of a frame may te detormined also
by the moment distribution procedure described in Secticn 13.




23. FReed for Approximate Motholc of Anslvsis.

The method that has besn described, sven though simple Bothoth
principle and in the details of 158 spplication, may beoome time consuming
when applied to 'sjbructnres comprising a very large number of members. For
Very complex structures, such as multi-story multi-bay building frames, it
mey e desirsble to habe a simpler, th‘ough less sccurate, fethod of analysis. -

. _ Strictly speaking; the dynamic response of a member of a rramwoi‘li
anu, as a consequence, the nctu-al frequencies of the structure ddpend on the
properties of all the members in the structure. : Intuition leads one to ex-

_pect, however, that the importance of this influsnce diminishes rapidlyces -

the distserce from the member concerned increases. For example, the natural

frequencies of a two-span beam may vary groably, depending on whether ‘Ehe
extreme ends are f:.xed or hinged; cn tbe otner hand, for e mni;biple-spﬁ' .'
beam the natural frequencies may be almost independent of the condition of
restraint at the .extreme ends. For example, for a uniform beam of two
equal spans, the f'ﬁndanental natural frequency for f:Lxed-. ende is 56 percent
_higher them the corresponding natural frequenc’y for h;lnged ends. For a |
unifornm been, of seven equel spans, the fundamental natural frequency for
fixed ends is only 6 percent. higher than for hinged ends. (The latter value
was obtzined from referemce (16) )e This condition indicates that it may
be possible to determine the natural frequencies of compIicated sysfens by
consldering cily a portion of the structure instead of the entire structure.
It is believed that an investigation aimed at determining the
possibilitées of such en approximate procedure will be most rewarding. The
procedure described herein will be of great value in such a study.
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In the discussion thus far, the effect. of permsnent axial forcss on
the natural frequencies of flexural vibration haa boen omitted. This effect,
which may be quite important when the magnitude of the externsl force on the

‘.structure in a aiulble frastion of the criticnl"m loed, msy be taken
inte account by use of nodinod stiffress and cun'y-over fectors which 1n-

clnde the influence of the axial thrust. IV is usmd that the azial loadn_._

- 'are 1ndepend.ent of time and that they are applied at the enda of tha nalbero.

The modified stiffnesses and carry-over factors uy be expregud
conveniently in dverms of the dimn:i*nleu peremeter A , which was uswd

'—_;previoual,, and iha ratio P/ o? where 2 1is tho axial oonp:nu.tve or tensilo :

force and P, 1s the fandemental buomag loau of %m ‘member usvming its

enda o be simply anpported

_ Algebreis axpreaeione for the dymnic flexurnl stiffneu snd the
dynnmic flexural cam—over factor are given in Appancu.x II. luneric;al =
values of these two quantitiea and of their produst ‘have bgen conputoﬁ for -
values of A between sero and 4.:15 at increments of 0.05 and for velues of
P/l?; botween ~4¢00 and 4,00 at imcrements of O.1. It is expected that these
results v‘ili bo made available soom. .

For the limiting case of A = O, the values of stiffness and carry-
over factors are those for an sxially loaded bar which does not vibrate.
Detailed .tcbulationl of these quantities have been presented previously by
Jemes (26), by Lundquist and Xroll (27), and by Hu end Libove (28). It
becomes apparcal itat the problem of elastic imstability is a limiting case

-of the more general preblem of the vitration of structures for which the

masxbers are subjected to axial forces.
The thise slope equatiwn has been applied to the irvestigetion of
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that. :Lf; can Le used 1o obtain soiutions with cozsiderably less elfezt.

:;:3

! :

—-;-—:MIMMMnmm——umuwmmtmmﬁmm!mm-
e B S
1
1

y .h\\,‘-‘ .

i o = e i . 0 SR P

M3 assecistes (3C). The proceduwrv desoribed in this report has ‘..hovnduntago




Mwmmmm-mmmmmmﬂwmmn

* o

»

i

s

[ i ;
| 4

=

|
|
|

e :
5
; %

&

|

€7
Ve AFPPLICATION OF METHOD 10 CONTIKUOUS ERAMS
OF FLEXIELER SUPPORTS
2de Generals
Thus far applieatina of the mthod has been rostrictad 1o continvous
beams on rigid supports and to continuous framss for which the joint do not
translate. In this ehapter, the methed is extondzd to conthuons bem on.

'flexlhle anpport; The floxibility of the supports is reprooented by a et
of mtul]; independent deflectional and rotational springs. To start with, ¢

1t 1s’assumed that the stiffnessos of the restraints are independent of the
vibra"bion freqneﬁcv/. The aasumptions made in the analysis are sindlar to
those made in the case of eontinw beams on rigid supportse S ey o

» The continmuz beam considered is shown in Fige 36s- As in the case
of eontipnons beams on rigid. supperta, consecutive aupports are mumbered frel
left to right, starting witna 1 at the extreme lett end and berninating with

z at the extreme rigit end.

26, Basic Relations.

2
Fignre 37 shovs "he extreme deflected position of spens =1 and J of -

a continnous beam undergoing steady-state forced vibrat:lm. -The vibmtionl :
are assumed to be meinteined by an 'éxeitin_g moment applied at the extreme
right end of the 7bem.

The fbrces_ acting at the ends of each span and the deflections and
rotatione i}, Abe supperts ais indicated in their positive directions. In

rddition to the symbols used previoualy. the symbol & 'is used to designste

the doflection of the beam at a mpport; the stiffness of a deflectional

spring is denoted by D, while th_g‘_{?;of a rotetional spring is dencted by R.

Since the beam is contimuous at the supports,

e kil
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éE. (6 = (G)x = 6, and (& =(Gr = & . (42) g

Alge, since mo external moment or fcrce acts at the joint, and since the in-

!‘ma 5

ternal mements and forces must be in eqnilibriun,'

Fo= (Y;)L + (\(J)n +t D& =0. - “s)

The momeats and shears acting at the ends of a span may be ex- -
pressed in terms of the rotations and daflections of the ends of the 9pen.
For exanple, the moment or ahear at the left end of span j may b° cbta...ne"
by the addition of the followin,, four component effectss
(1) Monent or. ahear produced at the left end, vhen that erd is rotatea 'by _
o, without deflcction and the right end 1s held fixed. ; e

J
(2) Homent or ahear prodnced at the -left end, when that end is hoM find

A e

' whil_e the right end is rotated by @ without deflection.

J+l
(3) Moment or shear produced at the left end, when that end is displaced

by & 4 ¥ithout rotation snd right end is held fixed.
(4) Moment or shear produced at the lsft exnd, when that end is held fixed

and the other end 1s deflected by O, ., without rotation.

Jj+l
The direct superposition of these effects is justified by the fact that, for

o S ——

a given frequency of vibretion, the moments and shears are linear fumctions

of the distortions. Thus,

(Mjle = Kj8 + (RK)} 6ju + @&} - (9Q)idjsr (46a)
H (or = T8 - (¢T) &u + QG + GQ,Gw . (47a) :
) Similarly,
(M = Kj-18j + (hRK)j-1 6j.y = Qjt &) + (@) Sj-r (46Db)
~ (G = Tji8) = €Tjes ot = Q1§ = (4QY1 1 (4)

. -




69

_. thatitnting Bqs. (468) and (46%) 1in Eq. (44) and Egs. (i7s) amé
(A’Ib) in Eq. (45), one obtains

M

Fij - (?G)J-té‘}-l + (*K)j-lej-f + (QJ 'aj-:)aj (48.)
t (K.t R + K;) 6 - (4Q); iy + (RK)j 631 = O,

k J

F = -(tT)r 8 = (4Q)1 G + (Ty + D+ )4 (49)
+(Qj - J-.)ej (tT);&jw +(§Q)6jw = O. x

Eiainating .3 +1 frem ﬁq. ‘(1.9) vy ue. of Bg. (48a), one obtains

- [9Qer + 4T ] 551 # [y (*K)J-, +(4Q)j-1] 81 * [an -Ti19;
- HqR-3]e; - [1;4Q) ?tT),]oj,ﬁ -0, '

e st

in which n - -% . _' (50)
Ry = K, tRj K, '
i =TarDi+Tj,
et - Qi = Gjr .

Equation (50) expresses the deflection at suppart j+1 in terms of the de-

flections and rotatioms at the two preceding supports. The rotstion at sup-
pert j+1 masy be obtained in terms of the deflestion & J41 and the distorticns
at supports j end j-1 from Eq. (48a), which may be revritten as

=GR 18-+ ~(kK)-,6-1 - Q&j ~ K;6) + (§Q)j&je - (kK)j 6o = 0. (48b)

Equation (50) assures equilibrium of shears, while B3. (48) assures equi'i-

)

librium of mements for suppert j. Gf course, both equations satisfy the con-

ditions of continuity. If support d is rigid, Eq. (50) is catisfied avto-

»

matically, and noed not be ased. If 6, = &, = 83‘1 = €, that is, when
three consecutive sappcrts ere rigld, ther X3, (48) reduces to Eg. {19a).

e e et b L | A oy
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La foregoing relatiens are applicadle to mtomdiaté n_uppor'u onlye.
For the end supports the following specialized relations must be used. First,

the boundary corditions fer the sxtreme left support are considered. Four
diffsrent éages must be distinguisheds :
Cape J. Beth D, ond R, are considered finite or sero in this case. Then, the

.

equilibrimm conditien for naiant- at support 1 is

Bt 05+ (RAKIB-(GRUE FRKAG - 0. ()

The correaponding condition for sheazs 1s
F, = (B+T)5 +Q,v, -GTHG * (762),& 0. (52a)
xiimzatiig 3, from By, (52),-one ebtaias an equati.on similar to Bqe (503,
(18- (D + T8 + [n(Rirk)-a] 6 - [a 7@,, (7 ]& =0. 3)

_From this eqnation, 52 may be-determimed in tem ot 8- and 4. q¢ With 6
detem;fea, @, also may be computed from Bqe (51.) in terms of&l and 51.

Case Il D, D. aonsidered infinite (rigid deflectional suppert) and R, finite

or se_ro.‘ Then, the equilibrium condition for moments is expreesed by the

equation

M, = (R+K)6, - (761),5, + (%K), 6, = 0. (51b) -
Zo equilibrium equﬁn for shears need be written, since st a rigid support
this is satisfied automatically, -
Cage T,I] B, is considered finite or sere, but By infinite (clemped exd). In

Sl o e

Vhis Gaidy 1L is umecessary Lo write only ome equilibrium equation for shearss

this is

F, = (D+T)§ - (tT), & +(4@)6 = 0. (52b)

,. mnxmmwnﬂi
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Cage IV. Beth Dy and 51 ars conaidord infinite in this case (fixed end). . g
The relation between the momcnt or shear at the fixsd end and the distortions g
at the segord support are o _ 5 %
) = (KRG - G5, (54)
v (un, &= (1,6 . . (55) i

Tt should be noted that. 8. (53), (51»), (52b), and: (54) or (55)°
~ involve .only three unkhour’ qmtitio.. E i

- 3 The conditions that must be latisfiod st the Tight ond of the beam
are as followss |
T P = (KetRG (m:.,e,,  Quid, +<,a),.,a (56) -
o Feo= (Tei * D) & = (¢T)eey 82~ G 6 -{70),-, 6., =0. (57 3 |
~ For Cese II 8 | | | : .
. | 5 =0, - (58) i
. M, = (Keet * R2)6, + (hK)e.i 6y, + (§@)z.y 5, = 0. (59)
| 6 -0, (60)~
Foo= (Toy* D& = (7)1 = (@Rt 6y = 0. )
For Case I7.
6 -0 (62)
8y = 0 (63

3B ek

27. QOutline of Procedure.
The rotation and deflection of the beam at support ] may be written
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: 5 = Gu+ v , | |
vhere u and y are dimensionless parameters which repredent two of ths three

(64a)

unknowns in the equations oxpra‘ndpg hs boumlary conddtions for the loft end
df-t'i;-e bess. 8; :nd 5'- are, relpoduvély, the ;'ota‘aion én& deilection at
support § when u = 1.00 and v = o,, and aj and- 6j are the correspending rote- ,
ticn and dezlection when a=0advs 1.00. Since the natural frequeanciss
of a cyatem depend on the relative valuss of the deflection, m arbitrery -
lnp]ittlle coneiatent vith the aotual boundary condition my 1--) choun for

- elther u or Y. Por oonvenience, the following valuava ere selected:

: 86 : '
!o'rb’u'e'Is ‘u=8 -1.00 and : v--- .
. & | _ R |
For caae ]:Iz n-91=1.00 : _and : ‘ 7:92_ S
Yor Gase IITs .u--irl 1.00 e v=8,
For Case IV: u=H 57 = 1.00 and v=6, .
, 3 T |

.The details of the procedure ares
l. For some referenc- spen of the bean, say span [, assume s value

of A. ~3 this 1s equiulont to sssunming & frequency of vibration
)\r ErIr ‘
W=
¢ : S
2, From Eq. (23) compute the A valma for the remaining spens of

the beam.

3. From Teble I in Appendix A and ths A valuss computed in the
previous step, dstermine the etiftnuaéa and the product of
the stiffnesses and the carry-over factors for each span.

4. Identify the parameters u and ¥.

5 Ccnsider that u = 1,00 and v = Co Progressing from suppors

SR s *W‘-wammmmt :

f 5
i '
e 0 e T PR | faa W e

e S mEn b -




73 ;
to suppcrt across ihe beam, determine the defleciivns znd rota-
. tions at all supports. Denote these by 9' end 5'0 If necessery,
evaluste also the unbalanced momont or shear at the extreme right
band support. Denote this by l-(; or f;. The distortions of the

second support are determined from the appropriate expressions

.
g0k e Hida

given in Egs. (51) through (55). The distortions of the remain-
ing supports are evaluated by the repeated application to each 3
support of Egs. (50) and (48Db).

6. Repeat the pracs:}ing step by considering that u = 0 and v = 1.00.

Denote the resulting distor‘tioﬁs by'en and 5". If necessary,

b o ol fanind ol

- determine also the magnitude of the unbalanced moment or shear 3
. i at the extreme right hend end. Denote this by -ﬁ:— or f: o -
7« The actuasl distortions at a support, say at support l ’ m
6 = 6 + Gv ,
B A
Similarly the total mbalanced:moment or shear at support g 18-.
Fe= P+ Moy,
Fr= Fat Fv.

8 From cne of the two equations expressing the boundary conditions

(64b)

7
ik B R N i L

hew e bl A

(65)

for the right end of the beam, determine the unkmown parameter !;
9. Bvaluete the second boundary equation.
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